A Probabilistic Framework for Decentralized Management of Trust and Quality
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
As large, data-driven artificial intelligence models become ubiquitous, guaranteeing high data quality is imperative for constructing models. Crowdsourcing, community sensing, and data filtering have long been the standard approaches to guaranteeing or imp ...
Federated Learning by nature is susceptible to low-quality, corrupted, or even malicious data that can severely degrade the quality of the learned model. Traditional techniques for data valuation cannot be applied as the data is never revealed. We present ...
A crucial building block of responsible artificial intelligence is responsible data governance, including data collection. Its importance is also underlined in the latest EU regulations. The data should be of high quality, foremost correct and representati ...
Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire ...
An important prerequisite for developing trustworthy artificial intelligence is high quality data. Crowdsourcing has emerged as a popular method of data collection in the past few years. However, there is always a concern about the quality of the data thus ...
Production quality and process efficiency are the two main drivers that lead any industrial strategy. To ensure product quality, a duality historically existed between two approaches, namely batch sampling and systematic sampling. In batch sampling, the ba ...
We consider federated learning settings with independent, self-interested participants. As all contributions are made privately, participants may be tempted to free-ride and provide redundant or low-quality data while still enjoying the benefits of the FL ...
This paper proposes a real-time algorithm for processing and quality improvement of synchrophasor data (SD). The proposed algorithm first recovers the missing SD reported by phasor measurement units (PMUs), and performs low-rank approximation on data strea ...
In software engineering, the developers' joy of decomposing and recomposing microservice-based applications has led to an enormous wave of microservice artefact technologies. To understand them better, researchers perform hundreds of experiments and empiri ...
We propose FedGP, a framework for privacy-preserving data release in the federated learning setting. We use generative adversarial networks, generator components of which are trained by FedAvg algorithm, to draw private artificial data samples and empirica ...