Nonviolent CommunicationNonviolent Communication (NVC) is an approach to communication that is claimed to be based on principles of nonviolence. It is not an attempt to end disagreements, but rather a method that is claimed to increase empathy and improve the quality of life of those who utilize the method and the people around them. Nonviolent Communication evolved from concepts used in person-centered therapy, and was developed by clinical psychologist Marshall Rosenberg beginning in the 1960s and 1970s.
Nonverbal communicationNonverbal communication (NVC) is the transmission of messages or signals through a nonverbal platform such as eye contact, facial expressions, gestures, posture, use of objects and body language. It includes the use of social cues, kinesics, distance (proxemics) and physical environments/appearance, of voice (paralanguage) and of touch (haptics). A signal has three different parts to it, including the basic signal, what the signal is trying to convey, and how it is interpreted.
A* search algorithmA* (pronounced "A-star") is a graph traversal and path search algorithm, which is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. One major practical drawback is its space complexity, as it stores all generated nodes in memory. Thus, in practical travel-routing systems, it is generally outperformed by algorithms that can pre-process the graph to attain better performance, as well as memory-bounded approaches; however, A* is still the best solution in many cases.
Cache-oblivious algorithmIn computing, a cache-oblivious algorithm (or cache-transcendent algorithm) is an algorithm designed to take advantage of a processor cache without having the size of the cache (or the length of the cache lines, etc.) as an explicit parameter. An optimal cache-oblivious algorithm is a cache-oblivious algorithm that uses the cache optimally (in an asymptotic sense, ignoring constant factors). Thus, a cache-oblivious algorithm is designed to perform well, without modification, on multiple machines with different cache sizes, or for a memory hierarchy with different levels of cache having different sizes.
Upper and lower boundsIn mathematics, particularly in order theory, an upper bound or majorant of a subset S of some preordered set (K, ≤) is an element of K that is greater than or equal to every element of S. Dually, a lower bound or minorant of S is defined to be an element of K that is less than or equal to every element of S. A set with an upper (respectively, lower) bound is said to be bounded from above or majorized (respectively bounded from below or minorized) by that bound.
Intercultural communicationIntercultural communication is a discipline that studies communication across different cultures and social groups, or how culture affects communication. It describes the wide range of communication processes and problems that naturally appear within an organization or social context made up of individuals from different religious, social, ethnic, and educational backgrounds. In this sense, it seeks to understand how people from different countries and cultures act, communicate, and perceive the world around them.
Animal communicationAnimal communication is the transfer of information from one or a group of animals (sender or senders) to one or more other animals (receiver or receivers) that affects the current or future behavior of the receivers. Information may be sent intentionally, as in a courtship display, or unintentionally, as in the transfer of scent from predator to prey with kairomones. Information may be transferred to an "audience" of several receivers. Animal communication is a rapidly growing area of study in disciplines including animal behavior, sociology, neurology and animal cognition.
Steiner tree problemIn combinatorial mathematics, the Steiner tree problem, or minimum Steiner tree problem, named after Jakob Steiner, is an umbrella term for a class of problems in combinatorial optimization. While Steiner tree problems may be formulated in a number of settings, they all require an optimal interconnect for a given set of objects and a predefined objective function. One well-known variant, which is often used synonymously with the term Steiner tree problem, is the Steiner tree problem in graphs.
Seminal vesiclesThe seminal vesicles (also called vesicular glands, or seminal glands) are a pair of convoluted tubular glands that lie behind the urinary bladder of some male mammals. They secrete fluid that partly composes the semen. The vesicles are 5–10 cm in size, 3–5 cm in diameter, and are located between the bladder and the rectum. They have multiple outpouchings which contain secretory glands, which join together with the vas deferens at the ejaculatory duct. They receive blood from the vesiculodeferential artery, and drain into the vesiculodeferential veins.
Dijkstra's algorithmDijkstra's algorithm (ˈdaɪkstrəz ) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, road networks. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later. The algorithm exists in many variants. Dijkstra's original algorithm found the shortest path between two given nodes, but a more common variant fixes a single node as the "source" node and finds shortest paths from the source to all other nodes in the graph, producing a shortest-path tree.