Deformation and permeability of aggregated soft earth materials
Related publications (45)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes ...
We investigate the effect of shear dilatancy of a permeable fault on the diffusion of pore pressure and the occurrence of dynamic slip. Starting from the results of Garagash & Germanovich (2012), we include the effect of both inelastic changes of material ...
We address stepwise crack tip advancement and pressure fluctuations, which have been observed in the field and experimentally in fracturing saturated porous media. Both fracturing due to mechanical loading and pressure driven fracture are considered. After ...
Experimental determination of water permeability in unsaturated conditions is a critical issue. Among the existing experimental techniques, the instantaneous profile method is frequently used. When applied to bentonite-based materials, the method often sho ...
Permeability is an overarching mechanical parameter encompassing the effects of porosity, pore size, and interconnectivity of porous structures. This parameter directly influences transport of soluble particles and indirectly regulates fluid pressure and v ...
Although several studies aimed at linking electrical and hydraulic transport properties in rocks, the existing models remain at most incomplete. Based on this observation, in addition to the transport properties, this contribution investigates the pressure ...
Fluid flow in porous media is a multiscale process where the effective dynamics, which is often the goal of a computation, depends strongly on the porous micro structure. Resolving the micro structure in the whole porous medium can, however, be prohibitive ...
Understanding the mechanism of nucleation of dynamic rupture is an important issue in seismology. It is the key factor in determining the seismic potential of pre-existing faults under long-term loadings. Furthermore, the activation of Mode II fracture by ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...