Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a novel network model of spiking neurons, without preimposed topology and driven by STDP (Spike-Time-Dependent Plasticity), a temporal Hebbian unsupervised learning mode, based on biological observations of synaptic plasticity. The model is furt ...
Spiking Neuron Networks (SNNs) are often referred to as the 3rd generation of neural networks. They derive their strength and interest from an accurate modelling of synaptic interactions between neurons, taking into account the time of spike emission. SNNs ...
Statistical models of neural activity are at the core of the field of modern computational neuroscience. The activity of single neurons has been modeled to successfully explain dependencies of neural dynamics to its own spiking history, to external stimuli ...
In the present paper we propose a novel method for the identification and modeling of neural networks using extracellular spike recordings. We create a deterministic model of the effective network, whose dynamic behavior fits experimental data. The network ...
Generalized linear models are the most commonly used tools to describe the stimulus selectivity of sensory neurons. Here we present a Bayesian treatment of such models. Using the expectation propagation algorithm, we are able to approximate the full poster ...
Although it is widely believed that reinforcement learning is a suitable tool for describing behavioral learning, the mechanisms by which it can be implemented in networks of spiking neurons are not fully understood. Here, we show that different learning r ...
The complexity of processes occurring in the brain is an intriguing issue not just for scientists and medical doctors, but the humanity in general. The cortex ability to perceive and analyze an enormous amount of information in an instance of time, the par ...
Electrophysiological connectivity patterns in cortex often have a few strong connections, which are sometimes bidirectional, among a lot of weak connections. To explain these connectivity patterns, we created a model of spike timing–dependent plasticity (S ...
The integration of modulatory neurons into evolutionary artificial neural networks is proposed here. A model of modulatory neurons was devised to describe a plasticity mechanism at the low level of synapses and neurons. No initial assumptions were made on ...
We describe evolution of spiking neural architectures to control navigation of autonomous mobile robots. Experimental results with simple fitness functions indicate that evolution can rapidly generate spiking circuits capable of navigating in textured envi ...