Publication

Jet-Scheduling Control for SpiderCrane: Experimental Results

Abstract

SpiderCrane is a three-dimensional crane, whose main particularity lies in the absence of large inertial moving parts. This paper presents experimental results obtained with the novel jet-scheduling control methodology that is based on differential flatness. Jet scheduling consists essentially in using measurements to regenerate the derivatives associated with a reference trajectory. Through this regeneration, the feedforward control law, which is computed from the reference trajectory using the flatness property, is transformed into a feedback control law. Jet-scheduling control takes full advantage of the dynamic possibilities of SpiderCrane as it allows operation far away from the quasi-static mode of operation. In contrast to proportional-like compensators, the proposed control scheme does not over-react whenever the load is displaced in a persistent way, mainly because only higher derivatives are scheduled. Furthermore, the position of the upper pulley can be adapted without requiring a change in the load position, that is, without over-pulling the main cable. This general compliance makes the control methodology ``user friendly'' without cutting down on dynamic performance. Both point stabilization and trajectory tracking can be implemented.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.