State observerIn control theory, a state observer or state estimator is a system that provides an estimate of the internal state of a given real system, from measurements of the input and output of the real system. It is typically computer-implemented, and provides the basis of many practical applications. Knowing the system state is necessary to solve many control theory problems; for example, stabilizing a system using state feedback. In most practical cases, the physical state of the system cannot be determined by direct observation.
Adaptive controlAdaptive control is the control method used by a controller which must adapt to a controlled system with parameters which vary, or are initially uncertain.cite journal|author=Chengyu Cao, Lili Ma, Yunjun Xu|title="Adaptive Control Theory and Applications", Journal of Control Science and Engineering'|volume=2012|issue=1|year=2012|doi=10.1155/2012/827353|pages=1,2|doi-access=free For example, as an aircraft flies, its mass will slowly decrease as a result of fuel consumption; a control law is needed that adapts itself to such changing conditions.
Bondi k-calculusBondi k-calculus is a method of teaching special relativity popularised by Sir Hermann Bondi, that has been used in university-level physics classes (e.g. at The University of Oxford), and in some relativity textbooks. The usefulness of the k-calculus is its simplicity. Many introductions to relativity begin with the concept of velocity and a derivation of the Lorentz transformation. Other concepts such as time dilation, length contraction, the relativity of simultaneity, the resolution of the twins paradox and the relativistic Doppler effect are then derived from the Lorentz transformation, all as functions of velocity.