Publication

Focusing and continuous separation of cells in a microfluidic device using lateral dielectrophoresis

Abstract

We have fabricated a microfluidic device based on a novel geometrical arrangement of lateral metal electrodes and a patterned insulator. Our device combines the concept of insulator-based “electrodeless” dielectrophoresis with multiple frequencies to achieve focusing and continuous separation of dielectric particles flowing through a channel. The opposition of two DEP- force fields defines a position of equilibrium for the dielectric particles placed in these fields. The equilibrium is externally controllable by the applied signals at different frequencies and is a function of the dielectric properties of the particles and their surrounding medium. Opposite DEP-forces were used to accurately focus a stream of beads and yeast cells at different positions across the channel by simply adjusting potentials and frequencies. The same opposition of forces was then extended to the continuous separation of particles with different dielectric properties. A numerical calculation allowed extracting dielectric properties of the particles from their equilibrium positions.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Microfluidics
Microfluidics refers to a system that manipulates a small amount of fluids ((10−9 to 10−18 liters) using small channels with sizes ten to hundreds micrometres. It is a multidisciplinary field that involves molecular analysis, biodefence, molecular biology, and microelectronics. It has practical applications in the design of systems that process low volumes of fluids to achieve multiplexing, automation, and high-throughput screening.
Droplet-based microfluidics
Droplet-based microfluidics manipulate discrete volumes of fluids in immiscible phases with low Reynolds number and laminar flow regimes. Interest in droplet-based microfluidics systems has been growing substantially in past decades. Microdroplets offer the feasibility of handling miniature volumes (μl to fl) of fluids conveniently, provide better mixing, encapsulation, sorting, sensing and are suitable for high throughput experiments.
Paper-based microfluidics
Paper-based microfluidics are microfluidic devices that consist of a series of hydrophilic cellulose or nitrocellulose fibers that transport fluid from an inlet through the porous medium to a desired outlet or region of the device, by means of capillary action. This technology builds on the conventional lateral flow test which is capable of detecting many infectious agents and chemical contaminants. The main advantage of this is that it is largely a passively controlled device unlike more complex microfluidic devices.
Show more
Related publications (70)

Automated droplet manipulation in microfluidic systems

Christoph Merten, Jatin Panwar

Disclosed herein is a method of operating a microfluidic system, a microfluidic system for manipulating sample objects, and a control system for operating a microfluidic system. The method according to the invention is for operating a microfluidic system t ...
2023

Particle-sorting fluidic device and methods for using thereof

Carlotta Guiducci, Gloria Porro, Kevin Keim

Device, system and method for sorting particles comprised into a fluid are disclosed that improve the current settings of deterministic lateral displacement (DLD)-based microfluidic devices, so to sort and detect small particles such as extracellular vesic ...
2022

An integrated microfluidic device for stem cell differentiation based on cell-imprinted substrate designed for cartilage regeneration in a rabbit model

Philippe Renaud, Mojtaba Taghipoor, Shahin Bonakdar, Leila Montazeri

Separating cells from the body and cultivating them in vitro will alter the function of cells. Therefore, for optimal cell culture in the laboratory, conditions similar to those of their natural growth should be provided. In previous studies, it has been s ...
2021
Show more
Related MOOCs (23)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.