Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Small nanosized clusters of Co3O4 coated on PTFE (polytetrafluoroethylene) flexible film is reported as a novel supported photocatalyst effective in the fast discoloration of the azo-dye Orange II under simulated solar radiation in the presence of oxone (2KHSO5·KHSO4·K2SO4). The photocatalytic discoloration of Orange II on the PTFE/Co3O4 films proceeds within minutes and the process could be repeated many times without a loss in photocatalyst stability. The photodiscoloration proceeds with a photonic efficiency of ∼1. The PTFE seems to act as a structure forming matrix for the colloidal Co3O4 coated on it surface leading to nanosized clusters of Co3O4. Monitoring the amount of Co2+-ions shows the Co2+-ions from the PTFE/Co3O4 during the photocatalysis enter the solution and at a later are stage re-adsorbed the Co3O4 crystallographic network (∼8 min). By elemental analysis (EA) the loading of Co-loading per cm2 PTFE film was found to vary between 1% and 2%. Transmission electron microscopy (TEM) shows the size of the Co3O4 clusters to vary between 3 and 10 nm. Electron dispersive spectrometry (EDS) confirms the presence of Co on the PTFE. X-ray photoelectron spectroscopy (XPS) of the PTFE/Co3O4 films reveal a partial reduction of the Co3O4 after Orange II discoloration leading to a substantial increase of the amount of Co(II) species in the Co3O4. Physical insight is provided into the catalyst film surface by carrying out Ar-sputtering of the PTFE/Co3O4 surface to remove the catalyst overlayers up to ∼20 nm.
Andreas Züttel, Thi Ha My Pham, Kangning Zhao, Youngdon Ko, Liping Zhong, Manhui Wei
Thi Ha My Pham, Youngdon Ko, Liping Zhong