Multichannel thresholding with sensing dictionaries
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplici ...
In this paper, we propose a novel Deep Micro-Dictionary Learning and Coding Network (DDLCN). DDLCN has most of the standard deep learning layers (pooling, fully, connected, input/output, etc.) but the main difference is that the fundamental convolutional l ...
The data compiled through many Wordnet projects can be a rich source of seed information for a multilingual dictionary. However, the original Princeton WordNet was not intended as a dictionary per se, and spawning other languages from it introduces inheren ...
We propose a method for learning dictionaries towards sparse approximation of signals defined on vertices of arbitrary graphs. Dictionaries are expected to describe effectively the main spatial and spectral components of the signals of interest, so that th ...
The data compiled through many Wordnet projects can be a rich source of seed information for a multilingual dictionary. However, the original Princeton WordNet was not intended as a dictionary per se, and spawning other languages from it introduces inheren ...
We study the problem of learning constitutive features for the effective representation of graph signals, which can be considered as observations collected on different graph topologies. We propose to learn graph atoms and build graph dictionaries that pro ...
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in Big Data scenarios where large dictionary models may be spread over ...
Sparse representations of images in well-designed dictionaries can be used for effective classification. Meanwhile, training data available in most realistic settings are likely to be exposed to geometric transformations, which poses a challenge for the de ...
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in big data scenarios where multiple large dictionary models may be spr ...
Source separation, or demixing, is the process of extracting multiple components entangled within a signal. Contemporary signal processing presents a host of difficult source separation problems, from interference cancellation to background subtraction, bl ...