Size and microstructure effects on the mechanical behavior of FCC bicrystals by quasicontinuum method
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Shales have become increasingly important because they play key roles in modern energy and environmental geomechanics applications, such as nuclear waste storage, non-conventional oil and gas operations and CO2 geological storage. Shale behaves in a quasi- ...
The constant flow stress reached during uniaxial deformation of electrodeposited nanocrystalline Ni reflects a quasi-stationary balance between dislocation slip and grain boundary (GB) accommodation mechanisms. Stress reduction tests allow to suppress disl ...
Magnesium has multiple dislocation and twinning systems with starkly different properties, which make its plastic deformation strongly anisotropic and highly complex. Existing empirical interatomic potentials fail to capture the full scope of these propert ...
Continuous-fiber ceramic matrix composites (CMCs) are of interest as hot-section components in gas turbine engines due to their refractoriness and low density relative to metallic alloys. In service, CMCs will be subjected to spatially inhomogeneous temper ...
A constitutive model that couples elastic-plastic and damage theories is developed to predict the mechanical behavior of a shale from the Mont Terri rock laboratory (Opalinus Clay). The framework of continuum damage mechanics allows to predict the degradat ...
Microstructures in serpentine samples recovered from deformation experiments performed at high pressure (1-8 GPa), high temperature (150-500 degrees C), and laboratory strain rates (4 10(-4)-10(-6)s(-1)) were studied using transmission electron microscopy ...
Dislocation densities have been measured in Ni3Al(Hf) single crystals after deformation at various temperatures and strains. In addition, effective and athermal stresses have been determined by strain dip tests. A model is proposed for the strength anomaly ...
Polycrystalline materials with crystallite diameters below hundred nanometer exhibit extraordinary strength which goes along with a decrease in ductility. In order to tailor tough materials, which combine strength and ductility, the underlying deformation ...
The overall aim of this thesis has been to assess the potential of latex-based technologies for the preparation of polymer/clay nanocomposites. The key feature of latex-based technologies is that they offer the possibility of improved control of the final ...
The rigid body motion of the workpieces and their elastic-plastic deformations induced during high speed milling of thin-walled parts are the main root causes of part geometrical and dimensional variabilities; these are governed mainly from the choice of p ...