A superfamily of conserved domains in DNA damage-responsive cell cycle checkpoint proteins
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Liquid-liquid phase separation (LLPS) of proteins and RNAs has emerged as the driving force underlying the formation of membrane-less organelles. Such biomolecular condensates have various biological functions and have been linked to disease. The protein F ...
Thanks to recent advancements in synthetic biology, the dream of creating a synthetic cell has become feasible. However, due to its inherent complexity, one of the fundamental functions of all living systems, i.e., self-replication, remains to be introduce ...
It has become apparent that difficulties to replicate telomeres concern not only the very ends of eukaryotic chromosomes. The challenges already start when the replication fork enters the telomeric repeats. The obstacles encountered consist mainly of nonca ...
Double-strand breaks (DSBs) are the most toxic type of DNA lesions. Cells repair these lesions using either end protection- or end resection-coupled mechanisms. To study DSB repair choice, we present the Color Assay Tracing-Repair (CAT-R) to simultaneously ...
Oxidative DNA lesions, constantly generated by both endogenous and environmentally induced reactive oxygen species, are removed via the base excision repair pathway. In bacteria, Fpg and Nei DNA glycosylases, belonging to the helix-two-turn-helix (H2TH) st ...
The evolutionarily conserved POT1 protein binds single-stranded G-rich telomeric DNA and has been implicated in contributing to telomeric DNA maintenance and the suppression of DNA damage checkpoint signaling. Here, we explore human POT1 function through g ...
DNA-protein interactions lie at the crux of life's essential processes. As such, various technologies have been developed to characterize these interactions. The distinct advantages of these technologies can be leveraged to study different facets of these ...
Structural maintenance of chromosomes flexible hinge domain-containing protein 1 (SMCHD1) has been implicated in X-chromosome inactivation, imprinting, and DNA damage repair, and mutations in SMCHD1 can cause facioscapulohumeral muscular dystrophy. More re ...
Telomeres are prone to damage inflicted by reactive oxygen species (ROS). Oxidized telomeric DNA and nucleotide substrates inhibit telomerase, causing telomere shortening. In addition, ROS can induce telomeric single-strand DNA breaks (SSBs). The peroxired ...
Self-regeneration is a fundamental function of all living systems. Here we demonstrate partial molecular self-regeneration in a synthetic cell. By implementing a minimal transcription-translation system within microfluidic reactors, the system is able to r ...