Publication

Model refactoring using transformations

Slavisa Markovic
2008
EPFL thesis
Abstract

Modern software is reaching levels of complexity encountered in biological systems; sometimes comprising systems of systems each of which may include tens of millions of lines of code. Model Driven Engineering (MDE) advocates raising the level of abstraction as an instrument to deal with software complexity. It promotes usage of software models as primary artifacts in a software development process. Traditionally, these MDE models are specified by Unified Modeling Language (UML) or by a modeling language created for a specific domain. However, in the vast area of software engineering there are other techniques used to improve quality of software under development. One of such techniques is refactoring which represents introducing structured changes in software in order to improve its readability, extensibility, and maintainability, while preserving behavior of the software. The main application area for refactorings is still programming code, despite the fact that modeling languages and techniques has significantly gained in popularity, in recent years. The main topic of this thesis is making an alliance between the two virtually orthogonal techniques: software modeling and refactoring. In this thesis we have investigated how to raise the level of abstraction of programming code refactorings to the modeling level. This resulted in a catalog of model refactorings each specified as a model transformation rule. In addition, we have investigated synchronization problems between different models used to describe one software system, i.e. when one model is refactored what is the impact on all dependent models and how this impact can be formalized. We have concentrated on UML class diagrams as domain of refactorings. As models dependent on class diagrams, we have selected Object Constraint Language (OCL) annotations, and object diagrams. This thesis formalizes the most important refactoring rules for UML class diagrams and classifies them with respect to their impact on object diagrams and annotated OCL constraints. For refactoring rules that have an impact on dependent artifacts we formalize the necessary changes of these artifacts. Moreover, in this thesis, we present a simple criterion and a proof technique for the semantic preservation of refactoring rules that are defined for UML class and object diagrams, and OCL constraints. In order to be able to prove semantic preservation, we propose a model transformation approach to specify the semantics of constraint languages.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (42)
Modeling language
A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure Programing language. A modeling language can be graphical or textual. Graphical modeling languages use a diagram technique with named symbols that represent concepts and lines that connect the symbols and represent relationships and various other graphical notation to represent constraints.
Unified Modeling Language
The unified modeling language (UML) is a general-purpose visual modeling language that is intended to provide a standard way to visualize the design of a system. UML provides a standard notation for many types of diagrams which can be roughly divided into 3 main groups: behavior diagrams, interaction diagrams, and structure diagrams. The creation of UML was originally motivated by the desire to standardize the disparate notational systems and approaches to software design.
Domain-specific modeling
Domain-specific modeling (DSM) is a software engineering methodology for designing and developing systems, such as computer software. It involves systematic use of a domain-specific language to represent the various facets of a system. Domain-specific modeling languages tend to support higher-level abstractions than general-purpose modeling languages, so they require less effort and fewer low-level details to specify a given system.
Show more
Related publications (99)

Metamodel for Safety Risk Management of Medical Devices Based on ISO 14971

Mihai Adrian Ionescu, David Atienza Alonso

The integration of information technologies into medical systems has led to an increase in digitalization, which results in enormous possibilities, but also challenges in system development. The ever-growing complexity of modern medical devices (MD) requir ...
2023

Code Generation Approach Supporting Complex System Modeling based on Graph Pattern Matching

Jinzhi Lu, Yan Yan

Code generation is an effective way to drive the complex system development in model-based systems engineering. Currently, different code generators are developed for different modeling languages to deal with the development of systems with multi-domain. T ...
ELSEVIER2022

Systematic Literature Review of MBSE Tool-Chains

Jinzhi Lu, Yan Yan

Currently, the fundamental tenets of systems engineering are supported by a model-based approach to minimize risks and avoid design changes in late development stages. The models are used to formalize, analyze, design, optimize, and verify system developme ...
MDPI2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.