Knowledge workerKnowledge workers are workers whose main capital is knowledge. Examples include ICT Professionals, physicians, pharmacists, architects, engineers, scientists, design thinkers, public accountants, lawyers, editors, and academics, whose job is to "think for a living". Knowledge work can be differentiated from other forms of work by its emphasis on "non-routine" problem solving that requires a combination of convergent and divergent thinking. But despite the amount of research and literature on knowledge work, there is no succinct definition of the term.
Knowledge representation and reasoningKnowledge representation and reasoning (KRR, KR&R, KR2) is the field of artificial intelligence (AI) dedicated to representing information about the world in a form that a computer system can use to solve complex tasks such as diagnosing a medical condition or having a dialog in a natural language. Knowledge representation incorporates findings from psychology about how humans solve problems and represent knowledge in order to design formalisms that will make complex systems easier to design and build.
Group representationIn the mathematical field of representation theory, group representations describe abstract groups in terms of bijective linear transformations of a vector space to itself (i.e. vector space automorphisms); in particular, they can be used to represent group elements as invertible matrices so that the group operation can be represented by matrix multiplication. In chemistry, a group representation can relate mathematical group elements to symmetric rotations and reflections of molecules.
Knowledge engineeringKnowledge engineering (KE) refers to all technical, scientific and social aspects involved in building, maintaining and using knowledge-based systems. One of the first examples of an expert system was MYCIN, an application to perform medical diagnosis. In the MYCIN example, the domain experts were medical doctors and the knowledge represented was their expertise in diagnosis. Expert systems were first developed in artificial intelligence laboratories as an attempt to understand complex human decision making.
Commonsense reasoningIn artificial intelligence (AI), commonsense reasoning is a human-like ability to make presumptions about the type and essence of ordinary situations humans encounter every day. These assumptions include judgments about the nature of physical objects, taxonomic properties, and peoples' intentions. A device that exhibits commonsense reasoning might be capable of drawing conclusions that are similar to humans' folk psychology (humans' innate ability to reason about people's behavior and intentions) and naive physics (humans' natural understanding of the physical world).
Deductive reasoningDeductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. it is impossible for the premises to be true and the conclusion to be false. For example, the inference from the premises "all men are mortal" and "Socrates is a man" to the conclusion "Socrates is mortal" is deductively valid. An argument is sound if it is valid and all its premises are true.
Case-based reasoningIn artificial intelligence and philosophy, case-based reasoning (CBR), broadly construed, is the process of solving new problems based on the solutions of similar past problems. In everyday life, an auto mechanic who fixes an engine by recalling another car that exhibited similar symptoms is using case-based reasoning. A lawyer who advocates a particular outcome in a trial based on legal precedents or a judge who creates case law is using case-based reasoning.
Symbolic artificial intelligenceIn artificial intelligence, symbolic artificial intelligence is the term for the collection of all methods in artificial intelligence research that are based on high-level symbolic (human-readable) representations of problems, logic and search. Symbolic AI used tools such as logic programming, production rules, semantic nets and frames, and it developed applications such as knowledge-based systems (in particular, expert systems), symbolic mathematics, automated theorem provers, ontologies, the semantic web, and automated planning and scheduling systems.