Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
During early somite stages of development, the broad endoderm-derived foregut and hindgut territories become further subdivided along the antero-posterior axis into organs. One of these organs is the pancreas which serves two major physiological functions: ...
The female reproductive hormones estrogens, progesterone, and prolactin control postnatal breast development and are important to breast carcinogenesis. In particular, exposure to progesterone is tightly linked to breast cancer risk. Using the mouse as a m ...
Canonical Wnt signaling plays a critical role in stem cell maintenance in epithelial homeostasis and carcinogenesis. Here, we show that in the mouse this role is critically mediated by Bcl9/Bcl9l, the mammalian homologues of Legless, which in Drosophila is ...
Pygopus has been discovered as a fundamental Wnt signaling component in Drosophila. The mouse genome encodes two Pygopus homologs, Pygo1 and Pygo2. They serve as context-dependent beta-catenin coactivators, with Pygo2 playing the more important role. All P ...
Epithelial-mesenchymal interactions are key to skin morphogenesis and homeostasis. We report that maintenance of the hair follicle keratinocyte cell fate is defective in mice with mesenchymal deletion of the CSL/RBP-Jkappa gene, the effector of "canonical" ...
The ovarian hormones estrogen and progesterone orchestrate postnatal mammary gland development and are implicated in breast cancer. Most of our understanding of the molecular mechanisms of estrogen receptor (ER) and progesterone receptor (PR) signaling ste ...
Wnt signaling is essential for embryogenesis and adult tissue homeostasis and contributes to cancer development, especially in the colon. A new essential pathway component, legless, was identified in Drosophila melanogaster. Mice with Cre/loxP-mediated con ...
Loss of organization is a principle feature of cancers; therefore it is important to understand how normal adult multilineage tissues, such as bilayered secretory epithelia, establish and maintain their architectures. The self-organization process that dri ...
The difficulty to find compatible donors for bone marrow transplantation makes the need for an alternative source of HSCs urgent. HSC derived from patient-specific iPS cells are ideal candidates for this purpose. Nevertheless, although HSCs are the best ch ...
Wnt/beta-catenin and NF-kappaB signaling mechanisms provide central controls in development and disease, but how these pathways intersect is unclear. Using hair follicle induction as a model system, we show that patterning of dermal Wnt/beta-catenin signal ...