Computer stereo visionComputer stereo vision is the extraction of 3D information from digital images, such as those obtained by a CCD camera. By comparing information about a scene from two vantage points, 3D information can be extracted by examining the relative positions of objects in the two panels. This is similar to the biological process of stereopsis. In traditional stereo vision, two cameras, displaced horizontally from one another, are used to obtain two differing views on a scene, in a manner similar to human binocular vision.
Facial nerveThe facial nerve, also known as the seventh cranial nerve, cranial nerve VII, or simply CN VII, is a cranial nerve that emerges from the pons of the brainstem, controls the muscles of facial expression, and functions in the conveyance of taste sensations from the anterior two-thirds of the tongue. The nerve typically travels from the pons through the facial canal in the temporal bone and exits the skull at the stylomastoid foramen.
Facial musclesThe facial muscles are a group of striated skeletal muscles supplied by the facial nerve (cranial nerve VII) that, among other things, control facial expression. These muscles are also called mimetic muscles. They are only found in mammals, although they derive from neural crest cells found in all vertebrates. They are the only muscles that attach to the dermis. The facial muscles are just under the skin (subcutaneous) muscles that control facial expression.
Emotion recognitionEmotion recognition is the process of identifying human emotion. People vary widely in their accuracy at recognizing the emotions of others. Use of technology to help people with emotion recognition is a relatively nascent research area. Generally, the technology works best if it uses multiple modalities in context. To date, the most work has been conducted on automating the recognition of facial expressions from video, spoken expressions from audio, written expressions from text, and physiology as measured by wearables.
Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Face IDFace ID is a facial recognition system designed and developed by Apple Inc. for the iPhone and iPad Pro. The system allows biometric authentication for unlocking a device, making payments, accessing sensitive data, providing detailed facial expression tracking for Animoji, as well as six degrees of freedom (6DOF) head-tracking, eye-tracking, and other features. Initially released in November 2017 with the iPhone X, it has since been updated and introduced to several new iPhone models, and all iPad Pro models.
Ambiguous grammarIn computer science, an ambiguous grammar is a context-free grammar for which there exists a string that can have more than one leftmost derivation or parse tree. Every non-empty context-free language admits an ambiguous grammar by introducing e.g. a duplicate rule. A language that only admits ambiguous grammars is called an inherently ambiguous language. Deterministic context-free grammars are always unambiguous, and are an important subclass of unambiguous grammars; there are non-deterministic unambiguous grammars, however.
HumanHumans, or modern humans (Homo sapiens), are the most common and widespread species of primate. A great ape characterized by their hairlessness, bipedalism, and high intelligence, humans have a large brain and resulting cognitive skills that enable them to thrive in varied environments and develop complex societies and civilizations. Humans are highly social and tend to live in complex social structures composed of many cooperating and competing groups, from families and kinship networks to political states.
Multiclass classificationIn machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). While many classification algorithms (notably multinomial logistic regression) naturally permit the use of more than two classes, some are by nature binary algorithms; these can, however, be turned into multinomial classifiers by a variety of strategies.
Statistical classificationIn statistics, classification is the problem of identifying which of a set of categories (sub-populations) an observation (or observations) belongs to. Examples are assigning a given email to the "spam" or "non-spam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient (sex, blood pressure, presence or absence of certain symptoms, etc.). Often, the individual observations are analyzed into a set of quantifiable properties, known variously as explanatory variables or features.