Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
A tunable and self-regulating on-chip carbon nanotube based mass balance is presented for small-size and low-cost environmental and healthcare applications. Tube stretching and a phase-locked loop topology make the system widely universal and invariant to ...
This study adds a new dimension to lab-on-a-chip systems by employing three-dimensional (3D) integration technology for improved performance, higher functionality, and on-chip computational power. Despite the extensive amount of current research on 3D memo ...
Matching the scale of microfluidic flow systems with that of microelectronic chips for realizing monolithically integrated systems still needs to be accomplished. However, this is appealing only if such re-scaling does not compromise the fluidic throughput ...
We demonstrate data storage on glass/silicon microfluidic devices fabricated using parylene-C as a bonding layer. In particular, we report intermediate parylene-C bonding layer fluorescence (iPBLF) and its use as an on-chip medium for data storage by dynam ...
The term of optofluidics defines an emergent research field that combines microfluidics and optics. In many lab-on-a-chip applications, these two technologies are used in combining the microfluidics for sample delivery and optics for sensing and controllin ...
Wafer bonding using parylene-C to Si, SiO2 and SiN surfaces has recently been shown to enable high pressure-resistant microfluidic devices with metallization and CMOS-integration capability. Here, we report characterization of intermediate parylene-C bondi ...
Pressure lies at the basis of operation of most microfluidic systems, and is a determinant factor in the extent of miniaturization and in limiting the throughput and time constant of the microfluidic assays. Despite the apparent importance given to fluidic ...
We show experimentally that an inexpensive glass microcapillary can accumulate lambda-phage DNA at its tip and deliver the DNA into the capillary using a combination of electro-osmotic flow, pressure-driven flow, and electrophoresis. We develop an efficien ...
High pressure-rated channels allow microfluidic assays to be performed on a smaller footprint while keeping the throughput, thanks to the higher enabled flow rates, opening perspectives for cost-effective integration of CMOS chips to microfluidics circuits ...
A new design for a compact portable lab-on-a-chip instrument based on MCE and dual capacitively coupled contactless conductivity detection (dC4D) is described. The instrument is battery powered with total dimension of 14 x 25 x 8 cm3 (w x l x h), and weigh ...