Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
During the last glacial cycle, Greenland temperature showed many rapid temperature variations, the so-called Dansgaard-Oeschger (DO) events. The past atmospheric methane concentration closely followed these temperature variations, which implies that the wa ...
The Antarctic Vostok ice core provided compelling evidence of the nature of climate, and of climate feedbacks, over the past 420,000 years. Marine records suggest that the amplitude of climate variability was smaller before that time, but such records are ...
Temperature is one of the most important range-limiting factors for many seaweeds. Driven by the recent climatic changes, rapid northward shifts of species' distribution ranges can potentially modify the phylogeographic signature of Last Glacial Maximum. W ...
We present a new gridded climate reconstruction for Europe for the last 12,000 years based on pollen data. The reconstruction is an update of Davis et al. (2003) using the same methodology, but with a greatly expanded fossil and surface-sample dataset and ...
The largest natural increases in atmospheric CO2 concentration as recorded in ice cores occur when the Earth climate abruptly shifts from a glacial to an interglacial state. Open questions remain regarding the processes at play, the sequences of events and ...
For more than a decade, scientists have argued about the warmth of the current interglaciation. Was the warmth of the preindustrial late Holocene natural in origin, the result of orbital changes that had not yet driven the system into a new glacial state? ...
Isoprene and its oxidation products are major players in the oxidative chemistry of the troposphere. Current understanding of the factors controlling biogenic isoprene emissions and of the fate of isoprene oxidation products in the atmosphere has been evol ...
Ice core analysis provides the most direct evidence of changes in some major greenhouse gases (CO2, CH4 and N2O) over the climatic cycle covering approximately the last 150,000 years. A remarkable overall correlation is observed between the CO2 or CH4 reco ...
The modern vegetation of Europe is a product of its history. Climate change, plant migration, and human activity have all been important drivers of Holocene (11,500 years ago to the present) vegetation dynamics, but it is difficult to disentangle the relat ...
The large, rapid increase in atmospheric N2O concentrations that occurred concurrent with the abrupt warming at the end of the Last Glacial period might have been the result of a reorganization in global biogeochemical cycles. To explore the sensitivity of ...