Publication

Recombinant iron-regulatory factor functions as an iron-responsive-element-binding protein, a translational repressor and an aconitase. A functional assay for translational repression and direct demonstration of the iron switch

Lukas Kühn
1993
Journal paper
Abstract

The translation of ferritin and erythroid 5-aminolevulinate synthase mRNAs is regulated via a specific high-affinity interaction between an iron-responsive element in the 5' untranslated region of ferritin and erythroid 5-aminolevulinate synthase mRNAs and a 98-kDa cytoplasmic protein, the iron-regulatory factor. Iron-regulatory factor was expressed in vaccinia-virus-infected HeLa cells (hIRFvac) and in Escherichia coli (hIRFeco). An N-terminal histidine tag allowed a rapid one-step purification of large quantities of soluble recombinant protein. Both hIRFvac and hIRFeco bound specifically to iron-responsive elements and were immunoprecipitated by iron-regulatory-factor antibodies. Using in-vitro-transcribed chloramphenicol-acetyltransferase mRNAs bearing an iron-responsive element in the 5' untranslated region, specific repression of chloramphenicol-acetyltransferase translation by hIRFvac and hIRFeco was demonstrated in wheat-germ extract. In addition, hIRFvac and hIRFeco were shown to display aconitase activity. Treatment of hIRFvac and hIRFeco with FeSO4 resulted in a drastic reduction in iron-responsive-element-binding of iron-regulatory factor, but caused a strong stimulation of its aconitase activity. The results establish that recombinant iron-regulatory factor is a bifunctional protein; after purification, it binds to iron-responsive elements and represses translation in vitro. Following iron treatment, iron-responsive-element binding is lost and aconitase activity is gained. No eukaryotic co-factor seems to be required for the conversion of the iron-responsive-element binding to the aconitase form of the protein.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (23)
Human iron metabolism
Human iron metabolism is the set of chemical reactions that maintain human homeostasis of iron at the systemic and cellular level. Iron is both necessary to the body and potentially toxic. Controlling iron levels in the body is a critically important part of many aspects of human health and disease. Hematologists have been especially interested in systemic iron metabolism, because iron is essential for red blood cells, where most of the human body's iron is contained.
Iron deficiency
Iron deficiency, or sideropenia, is the state in which a body lacks enough iron to supply its needs. Iron is present in all cells in the human body and has several vital functions, such as carrying oxygen to the tissues from the lungs as a key component of the hemoglobin protein, acting as a transport medium for electrons within the cells in the form of cytochromes, and facilitating oxygen enzyme reactions in various tissues. Too little iron can interfere with these vital functions and lead to morbidity and death.
Iron overload
Iron overload or haemochromatosis (also spelled hemochromatosis in American English) indicates increased total accumulation of iron in the body from any cause and resulting organ damage. The most important causes are hereditary haemochromatosis (HH or HHC), a genetic disorder, and transfusional iron overload, which can result from repeated blood transfusions. Organs most commonly affected by hemochromatosis include the liver, heart, and endocrine glands.
Show more
Related publications (33)

Iron-carbohydrate complexes treating iron anaemia: Understanding the nano-structure and interactions with proteins through orthogonal characterisation

Antonia Neels, Marianne Liebi, Tiberiu Totu

Intravenous (IV) iron-carbohydrate complexes are widely used nanoparticles (NPs) to treat iron deficiency anaemia, often associated with medical conditions such as chronic kidney disease, heart failure and various inflammatory conditions. Even though a ple ...
Elsevier2024

Iron status influences non-alcoholic fatty liver disease in obesity through the gut microbiome

Xavier Fernandez-Real Girona

Background: The gut microbiome and iron status are known to play a role in the pathophysiology of nonalcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear. Results: Here, we applied an integrative systems medicine approa ...
BMC2021

Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice

Heinrich Hofmann

Iron deficiency is an important subclinical disease affecting over one billion people worldwide. A growing body of clinical records supports the use of intravenous iron-carbohydrate complexes for patients where iron replenishment is necessary and oral iron ...
2020
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.