Publication

Structure and activity of regulatory elements involved in the activation of the Hoxd-11 gene during late gastrulation

Denis Duboule, Jozsef Zakany
1993
Journal paper
Abstract

We have used reporter gene constructs to study the cis regulation of the Hoxd-11 gene (previously Hox-4.6) in transgenic mice. We identified a 5 kb regulatory unit, which was able to reproduce important aspects of the initial activation of the gene along the major body axis. The comparison of the nucleotide sequence of this DNA fragment with the corresponding avian genomic region revealed the presence of seven highly homologous stretches of DNA outside the protein coding regions. In particular, the 3' flanking region contained two such domains that are required to mediate the embryonic activation. A chimeric construct containing the two short homologous regions from the chicken gene could replace the complete murine fragment thus demonstrating that the conserved domains carry the main regulatory elements involved in this activation. The first half of this bipartite regulatory region has enhancer activity when tested with a heterologous promoter, while the second half is required to restrict the enhancer activity to the proper expression domain. These results suggest that stage- and tissue-specific cooperation between regulatory elements is required to control properly the activity of the Hoxd-11 promoter.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (35)
Cis-regulatory element
Cis-regulatory elements (CREs) or Cis''-regulatory modules (CRMs) are regions of non-coding DNA which regulate the transcription of neighboring genes. CREs are vital components of genetic regulatory networks, which in turn control morphogenesis, the development of anatomy, and other aspects of embryonic development, studied in evolutionary developmental biology. CREs are found in the vicinity of the genes that they regulate. CREs typically regulate gene transcription by binding to transcription factors.
Transcriptional regulation
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is transcribed. This control allows the cell or organism to respond to a variety of intra- and extracellular signals and thus mount a response.
Enhancer (genetics)
In genetics, an enhancer is a short (50–1500 bp) region of DNA that can be bound by proteins (activators) to increase the likelihood that transcription of a particular gene will occur. These proteins are usually referred to as transcription factors. Enhancers are cis-acting. They can be located up to 1 Mbp (1,000,000 bp) away from the gene, upstream or downstream from the start site. There are hundreds of thousands of enhancers in the human genome. They are found in both prokaryotes and eukaryotes.
Show more
Related publications (71)

Meeting our Makers:Uncovering the cis-regulatory activity of transposable elements using statistical learning

Cyril David Son-Tuyên Pulver

The adaptation of organisms to their environment depends on the innovative potential inherent to genetic variation. In complex organisms such as mammals, processes like development and immunity require tight gene regulation. Complex forms emerge more often ...
EPFL2024

Statistical learning quantifies transposable element-mediated cis-regulation

Didier Trono, Evaristo Jose Planet Letschert, Julien Léonard Duc, Alexandre Coudray, Julien Paul André Pontis, Delphine Yvette L Grun, Cyril David Son-Tuyên Pulver, Shaoline Sheppard

Background: Transposable elements (TEs) have colonized the genomes of most metazoans, and many TE-embedded sequences function as cis-regulatory elements (CREs) for genes involved in a wide range of biological processes from early embryo- genesis to innate ...
2023

Toward a mechanistic understanding of variable chromatin modules

Gerard Llimos Aubach

Our genome is a long sequence of DNA that contains all the information to be able to constitute a living organism like us, similarly to what the letters in a book do to create a story. This sequence, which is a stretch of molecules called nucleotides, is a ...
EPFL2021
Show more
Related MOOCs (7)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.