Quasi-algebraically closed fieldIn mathematics, a field F is called quasi-algebraically closed (or C1) if every non-constant homogeneous polynomial P over F has a non-trivial zero provided the number of its variables is more than its degree. The idea of quasi-algebraically closed fields was investigated by C. C. Tsen, a student of Emmy Noether, in a 1936 paper ; and later by Serge Lang in his 1951 Princeton University dissertation and in his 1952 paper . The idea itself is attributed to Lang's advisor Emil Artin.
Group isomorphismIn abstract algebra, a group isomorphism is a function between two groups that sets up a one-to-one correspondence between the elements of the groups in a way that respects the given group operations. If there exists an isomorphism between two groups, then the groups are called isomorphic. From the standpoint of group theory, isomorphic groups have the same properties and need not be distinguished.
Hilbert's fifth problemHilbert's fifth problem is the fifth mathematical problem from the problem list publicized in 1900 by mathematician David Hilbert, and concerns the characterization of Lie groups. The theory of Lie groups describes continuous symmetry in mathematics; its importance there and in theoretical physics (for example quark theory) grew steadily in the twentieth century. In rough terms, Lie group theory is the common ground of group theory and the theory of topological manifolds.
Profinite groupIn mathematics, a profinite group is a topological group that is in a certain sense assembled from a system of finite groups. The idea of using a profinite group is to provide a "uniform", or "synoptic", view of an entire system of finite groups. Properties of the profinite group are generally speaking uniform properties of the system. For example, the profinite group is finitely generated (as a topological group) if and only if there exists such that every group in the system can be generated by elements.
Conjugacy classIn mathematics, especially group theory, two elements and of a group are conjugate if there is an element in the group such that This is an equivalence relation whose equivalence classes are called conjugacy classes. In other words, each conjugacy class is closed under for all elements in the group. Members of the same conjugacy class cannot be distinguished by using only the group structure, and therefore share many properties. The study of conjugacy classes of non-abelian groups is fundamental for the study of their structure.
E8 (mathematics)DISPLAYTITLE:E8 (mathematics) In mathematics, E8 is any of several closely related exceptional simple Lie groups, linear algebraic groups or Lie algebras of dimension 248; the same notation is used for the corresponding root lattice, which has rank 8. The designation E8 comes from the Cartan–Killing classification of the complex simple Lie algebras, which fall into four infinite series labeled An, Bn, Cn, Dn, and five exceptional cases labeled G2, F4, E6, E7, and E8. The E8 algebra is the largest and most complicated of these exceptional cases.
Identity componentIn mathematics, specifically group theory, the identity component of a group G refers to several closely related notions of the largest connected subgroup of G containing the identity element. In point set topology, the identity component of a topological group G is the connected component G0 of G that contains the identity element of the group. The identity path component of a topological group G is the path component of G that contains the identity element of the group.
Albert algebraIn mathematics, an Albert algebra is a 27-dimensional exceptional Jordan algebra. They are named after Abraham Adrian Albert, who pioneered the study of non-associative algebras, usually working over the real numbers. Over the real numbers, there are three such Jordan algebras up to isomorphism. One of them, which was first mentioned by and studied by , is the set of 3×3 self-adjoint matrices over the octonions, equipped with the binary operation where denotes matrix multiplication.
Covering groups of the alternating and symmetric groupsIn the mathematical area of group theory, the covering groups of the alternating and symmetric groups are groups that are used to understand the projective representations of the alternating and symmetric groups. The covering groups were classified in : for n ≥ 4, the covering groups are 2-fold covers except for the alternating groups of degree 6 and 7 where the covers are 6-fold. For example the binary icosahedral group covers the icosahedral group, an alternating group of degree 5, and the binary tetrahedral group covers the tetrahedral group, an alternating group of degree 4.
Irreducible complexityIrreducible complexity (IC) is the argument that certain biological systems with multiple interacting parts would not function if one of the parts were removed, so supposedly could not have evolved by successive small modifications from earlier less complex systems through natural selection, which would need all intermediate precursor systems to have been fully functional. This negative argument is then complemented by the claim that the only alternative explanation is a "purposeful arrangement of parts" inferring design by an intelligent agent.