**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Gyrokinetic Approach to the Propagation of Electromagnetic-Waves in Nonuniform Bounded Plasma Slabs

Abstract

A new code, SEMAL, has been developed which solves the linearized Vlasov-Maxwell wave equations to all orders in Larmor radii. Arbitrary density and temperature profiles as well as non-uniform magnetic fields are considered in slab geometry. The vacuum regions adjacent to the plasma slab are limited by perfectly conducting walls and contain an antenna as an excitation source. The linear response is obtained by solving the system of one first-order and two second-order integro-differential equations using a non-polluting finite element discretization. The general equations in the Fourier space, derived in a new comprehensive way, and their inverse transform, using k(y) = 0, are described as well as the convergence and non-polluting properties of the method. We present the results concerning the influence of alpha particles on ICRF heating schemes for ITER, where we show that small alphas concentration can alter the steady-state operation envisaged with ICRF fast wave current-drive.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (55)

Related MOOCs (32)

Related concepts (32)

Ontological neighbourhood

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

Discrete Fourier transform

In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration of the input sequence. An inverse DFT (IDFT) is a Fourier series, using the DTFT samples as coefficients of complex sinusoids at the corresponding DTFT frequencies.

Fourier transform

In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function.

Fourier series

A Fourier series (ˈfʊrieɪ,_-iər) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation.

Finite simplex lattice models are used in different branches of science, e.g., in condensed-matter physics, when studying frustrated magnetic systems and non-Hermitian localization phenomena; or in chemistry, when describing experiments with mixtures. An n ...

Till Junge, Ali Falsafi, Martin Ladecký

We generalize and provide a linear algebra-based perspective on a finite element (FE) ho-mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen (2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scale ...

In a recent paper, a procedure to reconstruct the attenuation function of a return-stroke current from the simultaneous measurements of the channel-base current and the radiated electromagnetic fields was presented. One of the assumptions of the whole fram ...

2023