**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Kinetic modeling of scrape-off layer plasmas

Abstract

Electron transport along open field lines in the diverted scrape-off layer of a tokamak is studied numerically via a kinetic Fokker-Planck approach. The method allows calculation of the distribution function in a situation where large parallel temperature gradients are maintained by collisional relaxation and, at the same time, superthermal electrons stream freely from the midplane of the plasma to the target-sheath boundary. The method also allows calculation of the self-consistent electrostatic field associated with parallel gradients in the distribution function, as well as the potential drop across the target/sheath boundary, where the latter is calculated to enforce appropriate boundary conditions at the target, although the sheath itself is not resolved. The kinetic results are compared to classical fluid results for the case of a simple (nonradiative) divertor. The kinetic solutions exhibit an enhanced superthermal electron population in the vicinity of the target, which results in a larger sheath energy transmission factor, a lower bulk electron temperature,and a smaller sheath potential drop. The sheath potential largely determines the energy with which ions impact the target, thereby affecting the rate of target erosion. Ionization rates and radiation rates from impurities in the vicinity of the target also depend strongly on the local electron temperature and can be sensitive to superthermal tails. (C) 1996 American Institute of Physics.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (40)

Related MOOCs (22)

Related concepts (32)

Ontological neighbourhood

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Introduction

Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.

Plasma Physics: Applications

Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.

In solid-state physics, the electron mobility characterises how quickly an electron can move through a metal or semiconductor when pulled by an electric field. There is an analogous quantity for holes, called hole mobility. The term carrier mobility refers in general to both electron and hole mobility. Electron and hole mobility are special cases of electrical mobility of charged particles in a fluid under an applied electric field. When an electric field E is applied across a piece of material, the electrons respond by moving with an average velocity called the drift velocity, .

In mathematics, the Robin boundary condition (ˈrɒbɪn; properly ʁɔbɛ̃), or third type boundary condition, is a type of boundary condition, named after Victor Gustave Robin (1855–1897). When imposed on an ordinary or a partial differential equation, it is a specification of a linear combination of the values of a function and the values of its derivative on the boundary of the domain. Other equivalent names in use are Fourier-type condition and radiation condition.

In the mathematical study of differential equations, the Dirichlet (or first-type) boundary condition is a type of boundary condition, named after Peter Gustav Lejeune Dirichlet (1805–1859). When imposed on an ordinary or a partial differential equation, it specifies the values that a solution needs to take along the boundary of the domain. In finite element method (FEM) analysis, essential or Dirichlet boundary condition is defined by weighted-integral form of a differential equation.

Annalisa Buffa, Pablo Antolin Sanchez, Giuliano Guarino

This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the C 1 \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackag ...

We study the global well-posedness and asymptotic behavior for a semilinear damped wave equation with Neumann boundary conditions, modeling a one-dimensional linearly elastic body interacting with a rigid substrate through an adhesive material. The key fea ...

Annalisa Buffa, Simone Deparis, Pablo Antolin Sanchez, Felipe Figueredo Rocha

Effective properties of materials with random heterogeneous structures are typically determined by homogenising the mechanical quantity of interest in a window of observation. The entire problem setting encompasses the solution of a local PDE and some aver ...

2023