Deuterium to helium plasma-wall change-over experiments in the JET MkII-gas box divertor
Related publications (33)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The deployment of high power radio frequency waves in the ion cyclotron range (ICRF) constitutes an important operational facility in many plasma devices, including ITER. Any charged particle describes a helical motion around a given magnetic field line, t ...
Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the ...
The nonlinear response of a low-beta tokamak plasma to non-axisymmetric fields offers an alternative to direct measurement of the non-axisymmetric part of the vacuum magnetic fields, often termed ‘error fields’. Possible approaches are discussed for determ ...
Energy is essential for human existence and our future depends on plentiful and accessible sources of energy. The world population is fast growing and the average energy used per capita increases. One of the greatest challenges for human beings is that of ...
The eigenmode spectrum is a fundamental starting point for the analysis of plasma stability and the onset of turbulence, but the characterization of the spectrum even for the simplest plasma model, ideal magnetohydrodynamics (MHD), is not fully understood. ...
The measurement of the plasma isotopic composition is necessary in future burning plasma devices such as ITER and DEMO as a tool for optimizing the DT fusion performance. This paper reports on the results of experiments performed on the JET tokamak where T ...
The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has b ...
The ITER plasma control system has the same functional scope as the control systems in present tokamaks. These are plasma operation scenario sequencing, plasma basic control (magnetic and kinetic), plasma advanced control (control of RWMs, NTMs, ELMs, erro ...
Stable, high-performance operation of a tokamak requires several plasma control problems to be handled simultaneously. Moreover, the complex physics which governs the tokamak plasma evolution must be studied and understood to make correct choices in contro ...
The heating and current drive characteristics for accessing advanced scenarios in ITER, close to those obtained in present-day experiments, are analysed together with the plasma performance using the prescribed-boundary CRONOS suites of codes. For the hybr ...