Influence of asymmetric energetic ion distributions on sawtooth stabilization
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The need of durable and abundant energy sources for future ages stimulates the studies of thermonuclear energy sources, based on hot plasma confinement by magnetic fields. The most developed concept of hot plasma trap is the tokamak, where the plasma confi ...
The deployment of high power radio frequency waves in the ion cyclotron range (ICRF) constitutes an important operational facility in many plasma devices, including ITER. Any charged particle describes a helical motion around a given magnetic field line, t ...
Thermonuclear controlled fusion research is a highly active branch of plasma physics. The main goal is the production of energy from the fusion reaction of hydrogen isotope nuclei, the same reaction that powers stars. The most promising present approach ar ...
Clear observations of early triggering of neo-classical tearing modes by sawteeth with long quiescent periods have motivated recent efforts to control, and in particular destabilize, sawteeth. One successful approach explored in TCV utilizes electron cyclo ...
The Tokamak `a Configuration Variable , TCV, addresses scientific questions to improve our understanding of magnetically confined plasmas and our ability to control them in ITER relevant scenarios, and explores avenues to improve the plasma performance on ...
Results are presented from the JET Trace Tritium Experimental (TTE) campaign using minority tritium (T) plasmas (n(T)/n(D) < 3%). Thermal tritium particle transport coefficients (D-T, nu(T)) are found to exceed neo-classical values in all regimes, except i ...
The understanding and predictive capability of transport physics and plasma confinement is reviewed from the perspective of achieving reactor-scale burning plasmas in the ITER tokamak, for both core and edge plasma regions. Very considerable progress has b ...
High-frequency gyrotrons; with high output power are mainly used for microwave heating and current drive in plasmas for thermonuclear fusion. The development of high-power gyrotrons; in continuous wave (CW) operation has been in progress for several years ...
Compact optimized stellarators offer novel solutions for confining high-beta plasmas and developing magnetic confinement fusion. The three-dimensional plasma shape can be designed to enhance the magnetohydrodynamic (MHD) stability without feedback or nearb ...
The generic problem of how, in a turbulent plasma, the experimentally relevant conditions of a particle flux very close to the null are achieved, despite the presence of strong heat fluxes, is addressed. Nonlinear gyrokinetic simulations of plasma turbulen ...