The role of the radial electric field for the transition to high confinement regimes
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Flux-tube (local) gyrokinetic codes are widely used to simulate drift-wave turbulence in magnetic confinement devices. While a large number of studies show that flux-tube codes provide an excellent approximation for turbulent transport in medium-large devi ...
Turbulence driven by small-scale instabilities results in strong heat and particle transport, which significantly shortens the confinement time and prevents the formation of a self-sustained plasma reaction in magnetic confinement devices. Control and poss ...
Tokamak devices aim to magnetically confine a hydrogen plasma at sufficiently high pressure to achieve net energy production from nuclear fusion of light isotopes. Predictive modeling and optimization is crucial for reliable operation of tokamak reactors, ...
This thesis delves into the potential of magnetic fusion energy, and in particular focuses on the stellarator concept. Stellarators use external coils to produce 3-dimensional (3D) magnetic fields that confine a thermonuclear plasma in a topologically toro ...
The Correlation Electron Cyclotron Emission (CECE) diagnostic at ASDEX Upgrade (AUG) is used to investigate the features of outer core and pedestal (rho(pol) = 0.85-1.0) turbulence across confinement regime transitions. The I-mode confinement regime is a p ...
The influence of background plasma poloidal rotation on the rotation frequency of the m/n = 2/1 drift tearing mode (DTM) has been studied in ADITYA-U tokamak. The poloidal rotation velocity of the background plasma in the ion diamagnetic direction is incre ...
Diverted discharges at negative triangularity on the DIII-D tokamak sustain normalized confinement and pressure levels typical of standard H-mode scenarios (H (98y2) similar or equal to 1, beta (N) similar or equal to 3) without developing an edge pressure ...
Short bursts (similar to 1 ms) of gas, injecting similar to 10(17)-10(18) molecules of hydrogen and/or deuterium, lead to the observation of cold pulse propagation phenomenon in hydrogen plasmas of the ADITYA-U tokamak. After every injection, a sharp incre ...
Under the auspices of EUROfusion (WPMST1), the ITER baseline scenario (IBL, [1]) is jointly investigated on AUG and TCV. While the AUG results were presented at the last IAEA FEC [2], this contribution focuses on the recent results obtained in TCV and rela ...
IAEA (FEC2021)2021
, , , , , , ,
A new set of carbon tiles, neutral beam heating optics and gas baffles were installed on TCV during thebaffled divertor upgrade in early 2019. The installation of the baffles allows a deconvolution of the roles ofmain chamber and divertor neutral pressure ...