A drift-kinetic Semi-Lagrangian 4D code for ion turbulence simulation
Related publications (32)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Similarly to neutral fluids, plasmas often exhibit turbulent behavior. Turbulence in plasmas is usually more complex than in neutral fluids due to long range interactions via electric and magnetic fields, and kinetic effects. It gives rise to many interest ...
Understanding non-linearly coupled physics between plasma transport and free-boundary equilibrium evolution is essential to operating future tokamak devices, such as ITER and DEMO, in the advanced tokamak operation regimes. To study the non-linearly couple ...
Bifurcated magnetohydrodynamic (MHD) equilibrium states are computed for ITER hybrid scenario and RFX-mod SHAx configurations with very flat or reversed core magnetic shear conditions. In the ITER studies, the minimum inverse rotational transform qmin is n ...
The generation of large-scale magnetic fields in magnetic electron drift mode turbulence is investigated. In particular, the mechanism of modulational instability caused by three-wave interactions is elucidated and the explicit increment is calculated. Also ...
The ultimate goal of magnetic confinement fusion research is to develop an electricity producing power plant based on thermonuclear fusion reactions. Among the most promising magnetic confinement devices, as leading concepts for future power plants, are to ...
Three-dimensional fluid simulations are performed in a simple magnetized toroidal plasma, in which vertical and toroidal magnetic fields create helicoidal magnetic field lines that terminate on the torus vessel. The simulations are carried out in the three ...
The kink instability of a magnetized plasma column (flux rope) is a fundamental process observed in laboratory and in natural plasmas. Previous theoretical, experimental, and observational work has focused either on the case of periodic (infinite) ropes (r ...
A full tokamak discharge simulator has been developed by combining a free-boundary equilibrium evolution code, DINA-CH, and an advanced transport modelling code, CRONOS. The combined tokamak discharge simulator provides a full simulation of a whole tokamak ...
In order to model a broader range of phenomena taking place in three-dimensional plasmas, the LEMan code has been extended to a warm formulation. As the wave propagation is strongly influenced by the parallel wave vector, special attention has been paid fo ...
Intermittent convective transport caused by coherent structures, or blobs, are universally observed in the edge of laboratory plasmas. Besides being of fundamental physics interest, the dynamics of these structures in fusion reactors influence the density ...