Impact of feature-size dependent etching on the optical properties of photonic crystal devices
Related publications (42)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Optical fibers have reshaped the technological landscape, from optical networks and high-speed data communication to in situ imaging and non-invasive surgery methods. The revolution allowed by these fibers has been made possible by its fabrication method, ...
Two-dimensional (2D) materials are atomically thin crystals with exceptional mechanical, electrical and optical properties. Their unique characteristics originating from quantum confinement in the vertical dimension have attracted a strong interest for sci ...
Keeping up with our constantly connected lifestyle of instant messages and video streaming has its repercussions. Data centers have been gobbling up resources becoming a significant share of the energy used worldwide. To keep up with demand and curb the en ...
Combining optical gain in direct-bandgap III-V materials with tunable optical feedback offered by advanced photonic integrated circuits is key to chip-scale external-cavity lasers (ECL), offering wideband tunability along with low optical linewidths. Exter ...
Diamond is an exceptional material - hard, stiff, transparent, which makes it ideal for the fabrication
of optical and mechanical systems that take advantage of these properties. Diamond
is not only "better", but it offers the possibility of integrating br ...
Quantum Integrated Photonics (QIP) harnesses quantum-states of light on tiny chips, from generation to processing and eventual detection. Within this context, this thesis explores functional QIP elements resulting from the monolithic integration of semicon ...
Gallium phosphide (GaP) is an indirect-bandgap semiconductor used widely in solid-state lighting. Despite numerous intriguing optical properties-including large chi ((2)) and chi ((3)) coefficients, a high refractive index (>3) and transparency from visibl ...
We report on a 16-core recirculating programmable photonic array based on MEMS-tunable directional couplers. The photonic array has a compact footprint (0.04mm(2)/cell) and negligible static power consumption. Waveguide-coupled single-ring resonators, CROW ...
We propose and investigate a new type of photonic crystal (PhC) cavity for integrated quantum photonics, which provides tailored optical modes with both confined and extended spatial components. The structures consist of elongated PhC cavities in which the ...
The integration of new materials mediating light-matter interaction in nanoscale devices is a persistent goal in nanophotonics. One of these materials is Gallium phosphide, which offers an attractive combination of a high refractive index (n=3.05 at a wave ...