Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in Big Data scenarios where large dictionary models may be spread over ...
Additive models form a widely popular class of regression models which represent the relation between covariates and response variables as the sum of low-dimensional transfer functions. Besides flexibility and accuracy, a key benefit of these models is the ...
Institute of Electrical and Electronics Engineers2017
In this paper, we consider learning dictionary models over a network of agents, where each agent is only in charge of a portion of the dictionary elements. This formulation is relevant in big data scenarios where multiple large dictionary models may be spr ...
In sparse signal representation, the choice of a dictionary often involves a tradeoff between two desirable properties – the ability to adapt to specific signal data and a fast implementation of the dictionary. To sparsely represent signals residing on wei ...
Institute of Electrical and Electronics Engineers2014
In this paper, we propose a novel Deep Micro-Dictionary Learning and Coding Network (DDLCN). DDLCN has most of the standard deep learning layers (pooling, fully, connected, input/output, etc.) but the main difference is that the fundamental convolutional l ...
We propose a novel sparse dictionary learning method for planar shapes in the sense of Kendall, namely configurations of landmarks in the plane considered up to similitudes. Our shape dictionary method provides a good trade-off between algorithmic simplici ...
We study the problem of learning constitutive features for the effective representation of graph signals, which can be considered as observations collected on different graph topologies. We propose to learn graph atoms and build graph dictionaries that pro ...
Sparse representations of images in well-designed dictionaries can be used for effective classification. Meanwhile, training data available in most realistic settings are likely to be exposed to geometric transformations, which poses a challenge for the de ...
This study presents a method for computing likelihood ratios (LRs) from multimodal score distributions, as the ones produced by some commercial off-the-shelf automated fingerprint identification systems (AFISs). The AFIS algorithms used to compare fingerma ...
Classifiers based on sparse representations have recently been shown to provide excellent results in many visual recognition and classification tasks. However, the high cost of computing sparse representations at test time is a major obstacle that limits t ...