Investigation of Local Electrochemical Performance and Local Degradation in an Operating Solid Oxide Fuel Cell
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This study reports on the combination of solid oxide fuel cell (SOFC) generators fueled with biogas as renewable energy source, recoverable from wastes but at present underexploited. From a mobilisable near-future potential in the European Union (EU-15) of ...
A small cogeneration system based on a Solid Oxide Fuel Cell (SOFC) fed on the renewable energy source biogas is presented. An existing farm biogas production site (35 m3 per day), currently equipped with a SOFC demonstration stack, is taken for reference. ...
Fuel Cells are electrochemical devices that are able to directly convert chemical energy to electrical energy, without any Carnot limitation. Hence, their energy efficiencies are relatively high. Among the various types of fuel cells, solid oxide fuel cell ...
The use of ammonia as a source of hydrogen for fuel cells has received little attention until now. Ammonia offers several advantages over hydrogen as a fuel and is produced commercially in massive quantities and as a biogas. This paper describes the result ...
A 3D simulation tool for solid oxide fuel cells is presented. The aim of this work is to predict current density, flow, temperature and concentration fields in order to compare and optimize repeat element geometry for a whole stack. A commercial CFD tool w ...
A SOFC concept based on microtubular cells is presented. Mechanical tests and modelling show viability for fast thermal cycling in air for both zirconia and ceria electrolyte tubes. To combine advantages of both these materials, the concept includes a thin ...
Polymer electrolyte and solid oxide are the two fuel cell types (PEFC, SOFC) under development in Switzerland. The very distinct operating temperatures of 80 °C (PEFC) and 800–950 °C (SOFC) impose fundamentally different requirements upon the nature of the ...