Probabilistic analysis of algorithmsIn analysis of algorithms, probabilistic analysis of algorithms is an approach to estimate the computational complexity of an algorithm or a computational problem. It starts from an assumption about a probabilistic distribution of the set of all possible inputs. This assumption is then used to design an efficient algorithm or to derive the complexity of a known algorithm. This approach is not the same as that of probabilistic algorithms, but the two may be combined.
Online algorithmIn computer science, an online algorithm is one that can process its input piece-by-piece in a serial fashion, i.e., in the order that the input is fed to the algorithm, without having the entire input available from the start. In contrast, an offline algorithm is given the whole problem data from the beginning and is required to output an answer which solves the problem at hand. In operations research, the area in which online algorithms are developed is called online optimization.
Chemical elementA chemical element is a chemical substance that cannot be broken down into other substances. The basic particle that constitutes a chemical element is the atom, and each chemical element is distinguished by the number of protons in the nuclei of its atoms, known as its atomic number. For example, oxygen has an atomic number of 8, meaning that each oxygen atom has 8 protons in its nucleus. This is in contrast to chemical compounds and mixtures, which contain atoms with more than one atomic number.
Competitive analysis (online algorithm)Competitive analysis is a method invented for analyzing online algorithms, in which the performance of an online algorithm (which must satisfy an unpredictable sequence of requests, completing each request without being able to see the future) is compared to the performance of an optimal offline algorithm that can view the sequence of requests in advance. An algorithm is competitive if its competitive ratio—the ratio between its performance and the offline algorithm's performance—is bounded.
Ceramic engineeringCeramic engineering is the science and technology of creating objects from inorganic, non-metallic materials. This is done either by the action of heat, or at lower temperatures using precipitation reactions from high-purity chemical solutions. The term includes the purification of raw materials, the study and production of the chemical compounds concerned, their formation into components and the study of their structure, composition and properties. Ceramic materials may have a crystalline or partly crystalline structure, with long-range order on atomic scale.
CeramicA ceramic is any of the various hard, brittle, heat-resistant, and corrosion-resistant materials made by shaping and then firing an inorganic, nonmetallic material, such as clay, at a high temperature. Common examples are earthenware, porcelain, and brick. The earliest ceramics made by humans were pottery objects (pots, vessels, or vases) or figurines made from clay, either by itself or mixed with other materials like silica, hardened and sintered in fire.
Atomic nucleusThe atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron in 1932, models for a nucleus composed of protons and neutrons were quickly developed by Dmitri Ivanenko and Werner Heisenberg. An atom is composed of a positively charged nucleus, with a cloud of negatively charged electrons surrounding it, bound together by electrostatic force.