On the relationship between the microstructure and the mechanical properties of an ODS ferritic/martensitic steel
Related publications (477)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
G115 steel has gained a growing interesting recently for its use in next-generation ultra-supercritical power plant applications. Due to the high densities of dislocations and lath martensite boundaries in G115 steel, interactions between solutes and dislo ...
The study was undertaken to gain insight into the micro-mechanisms controlling plasticity at the micrometer scale of elastic-plastic metallic alloys. Dynamic nano-indentation tests, where a small harmonic force amplitude is superimposed during loading, ref ...
An in-situ high resolution digital image correlation investigation during uniaxial tensile deformation reveals the recoverable and the non-recoverable strain mechanisms in a Ni51Ti49 alloy with a mean grain size of 35 mu m. Recoverable strain is due to the ...
Random body-centered-cubic (BCC) "High Entropy" alloys are a new class of alloys, some having high strength and good ductility at room temperature and some having exceptional high-temperature strength. There are no theories of strengthening of screw disloc ...
Samples from an ultrafine-grained Cu-4.5vol.%Al2O3 nanocomposite rod fabricated by powder compact extrusion were annealed at 400 and 700 degrees C for 15 min respectively, and their microstructure and mechanical properties were investigated. It shows that ...
The high-entropy alloy (HEA) concept was based on the idea that high mixing entropy can promote formation of stable single-phase microstructures. During the past 15 years, various alloy systems have been explored to identify HEA systems with improved prope ...
The body centered cubic (BCC) high entropy alloys (HEAs) MoNbTaW and MoNbTaVW show exceptional strength retention up to 1900K. The mechanistic origin of the retained strength is unknown yet is crucial for finding the best alloys across the immense space of ...
Austenitic stainless steels is used in many components of nuclear power plants, particularly in the pipes of cooling systems. Owing to power transients and to start-ups and shutdowns, these components are subjected to thermo-mechanical loadings (low-cycle ...
Metal Additive Manufacturing (AM) technologies have enabled the manufacturing of parts with complex geometries that were previously not feasible with conventional manufacturing. Unfortunately, many commercial engineering alloys (with the exception of alloy ...
Electron microscopy offers a wide range of techniques to study materials. Environmental Scanning Electron Microscopy (ESEM), in particular, allows the characterisation of samples at high-temperature using a laser heating stage, and under various gaseous at ...