Information theoryInformation theory is the mathematical study of the quantification, storage, and communication of information. The field was originally established by the works of Harry Nyquist and Ralph Hartley, in the 1920s, and Claude Shannon in the 1940s. The field, in applied mathematics, is at the intersection of probability theory, statistics, computer science, statistical mechanics, information engineering, and electrical engineering. A key measure in information theory is entropy.
Mutual informationIn probability theory and information theory, the mutual information (MI) of two random variables is a measure of the mutual dependence between the two variables. More specifically, it quantifies the "amount of information" (in units such as shannons (bits), nats or hartleys) obtained about one random variable by observing the other random variable. The concept of mutual information is intimately linked to that of entropy of a random variable, a fundamental notion in information theory that quantifies the expected "amount of information" held in a random variable.
Computational neuroscienceComputational neuroscience (also known as theoretical neuroscience or mathematical neuroscience) is a branch of neuroscience which employs mathematical models, computer simulations, theoretical analysis and abstractions of the brain to understand the principles that govern the development, structure, physiology and cognitive abilities of the nervous system. Computational neuroscience employs computational simulations to validate and solve mathematical models, and so can be seen as a sub-field of theoretical neuroscience; however, the two fields are often synonymous.
Neural codingNeural coding (or neural representation) is a neuroscience field concerned with characterising the hypothetical relationship between the stimulus and the individual or ensemble neuronal responses and the relationship among the electrical activity of the neurons in the ensemble. Based on the theory that sensory and other information is represented in the brain by networks of neurons, it is thought that neurons can encode both digital and analog information.
Sensory nervous systemThe sensory nervous system is a part of the nervous system responsible for processing sensory information. A sensory system consists of sensory neurons (including the sensory receptor cells), neural pathways, and parts of the brain involved in sensory perception and interoception. Commonly recognized sensory systems are those for vision, hearing, touch, taste, smell, balance and visceral sensation. Sense organs are transducers that convert data from the outer physical world to the realm of the mind where people interpret the information, creating their perception of the world around them.
Sensory processingSensory processing is the process that organizes and distinguishes sensation (sensory information) from one's own body and the environment, thus making it possible to use the body effectively within the environment. Specifically, it deals with how the brain processes multiple sensory modality inputs, such as proprioception, vision, auditory system, tactile, olfactory, vestibular system, interoception, and taste into usable functional outputs. It has been believed for some time that inputs from different sensory organs are processed in different areas in the brain.
Interaction informationThe interaction information is a generalization of the mutual information for more than two variables. There are many names for interaction information, including amount of information, information correlation, co-information, and simply mutual information. Interaction information expresses the amount of information (redundancy or synergy) bound up in a set of variables, beyond that which is present in any subset of those variables. Unlike the mutual information, the interaction information can be either positive or negative.
Sensory processing disorderSensory processing disorder (SPD, formerly known as sensory integration dysfunction) is a condition in which multisensory input is not adequately processed in order to provide appropriate responses to the demands of the environment. Sensory processing disorder is present in many people with dyspraxia, autism spectrum disorder and attention deficit hyperactivity disorder. Individuals with SPD may inadequately process visual, auditory, olfactory (smell), gustatory (taste), tactile (touch), vestibular (balance), proprioception (body awareness), and interoception (internal body senses) sensory stimuli.
Conditional mutual informationIn probability theory, particularly information theory, the conditional mutual information is, in its most basic form, the expected value of the mutual information of two random variables given the value of a third. For random variables , , and with support sets , and , we define the conditional mutual information as This may be written in terms of the expectation operator: . Thus is the expected (with respect to ) Kullback–Leibler divergence from the conditional joint distribution to the product of the conditional marginals and .
Quantum mutual informationIn quantum information theory, quantum mutual information, or von Neumann mutual information, after John von Neumann, is a measure of correlation between subsystems of quantum state. It is the quantum mechanical analog of Shannon mutual information. For simplicity, it will be assumed that all objects in the article are finite-dimensional. The definition of quantum mutual entropy is motivated by the classical case.