Self-advanced fast light propagation in an optical fiber based on Brillouin scattering
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Slow and fast light with null amplification or loss of a light signal is experimentally demonstrated. This novel method for producing zero-gain slow and fast light takes advantage of the great flexibility of stimulated Brillouin scattering in optical fiber ...
Brillouin slow light in optical fibers is a promising technique for the development of all-optical buffers to be used in optical routers. The main drawback of this technique up to now has been its narrow bandwidth, normally restricted to 35 MHz in conventi ...
We experimentally demonstrate that Brillouin slow light with an arbitrary large bandwidth can be readily obtained in conventional optical fibers using a simple and inexpensive pump spectral broadening technique ...
Retardation data captured by polarimetric stress-measurements in optical fibers have been reinterpreted in terms of both stress and inelastic strain. The linear dependence of strain birefringence on fiber drawing tension defines the Kohlrausch-Williams-Wat ...
In a previous paper (Song et al., 2005) we reported the first experimental demonstration of pulse advancement with gain in optical fibers using stimulated Brillouin scattering (SBS). We tested the two methods described above to achieve gain-assisted fast l ...
We demonstrate expeimentally a novel approach for fast light generation based on a wideband compound spectral resonance using stimulated Brillouin scattering. The pulses experience fast light with extremely reduced distortion and small amplitude change. ...
A method to achieve an extremely wide and flexible control of the group velocity in an optical fiber using stimulated Brillouin scattering is presented. Group velocities below 71,000 km/s on one hand, well exceeding the speed of light in vacuum on the othe ...
Delaying and advancement of optical pulses using stimulated Brillouin scattering in As2Se3 fiber is demonstrated. Pulses can be delayed by 37 ns in a 5-m-long fiber with a pump power as low as 60 mW. ...
Stimulated Brillouin scattering makes possible the generation of synthesized gain spectra, so that innovative slow light schemes can be realized, ranging from broadband tunable delays to a zero-gain situation identical to an ideal electromagnetically-induc ...
Retardation data captured by polarimetric stress-measurements in optical fibers have been reinterpreted in terms of both stress and inelastic strain. The linear dependence of strain birefringence on fiber drawing tension defines the Kohlrausch-Williams-Wat ...