Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Microscopy is of high interest for biology since it allows imaging features that are too small to
be seen with naked eyes. However, cells are mostly transparent to visible and infrared light
which makes it difficult to see with a traditional microscope. To ...
Scanning Near-field Optical Microscopy (SNOM) technique enables to overcome Abbe diffraction limit of far-field optics as well as to obtain simultaneously optical and topographical images. While the optical resolution of the method is limited by the apertu ...
Novel glazing with embedded micro-mirrors can significantly reduce the energy consumption due to cooling and lighting in buildings. Especially promising are large arrays of periodic micro compound-parabolic-concentrators (CPCs) with angular-selected transm ...
High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with su ...
Understanding cell functions is the major goal of molecular biology, which intends to elucidate the interactions between biomolecules at a subcellular level. One of the widely used techniques in molecular biology is fluorescence microscopy, which offers hi ...
Well-established imaging techniques proved that features below the diffraction limit can be observed optically using so-called super-resolution microscopies, which overcome Abbe's resolution limit. In traditional far-field microscopy, the introduction of f ...
Super-resoln. imaging of living cells can reveal nanoscopic details of live biol. systems. The development of small-mol. fluorophores that allow optimal imaging conditions is the key to enable live-specimen imaging with minimal invasiveness. The authors re ...
The incorporation of hypericin (Hyp) from aqueous solutions into giant unilamellar vesicle (GUV) membranes has been studied experimentally and by means of kinetic Monte Carlo modeling. The time evolution of Hyp fluorescence originating from Hyp monomers di ...
Recent advances in optical microscopy enable the visualization and quantification of biol. processes within live cells. To a great extent, these imaging techniques remain limited by the phys. properties of the chem. probes that are used as fluorescent tags ...
Dielectric microspheres with appropriate refractive index can image objects with super-resolution, that is, with a precision well beyond the classical diffraction limit. A microsphere is also known to generate upon illumination a photonic nanojet, which is ...