Mathematical proofA mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation".
Active contour modelActive contour model, also called snakes, is a framework in computer vision introduced by Michael Kass, Andrew Witkin, and Demetri Terzopoulos for delineating an object outline from a possibly 2D . The snakes model is popular in computer vision, and snakes are widely used in applications like object tracking, shape recognition, , edge detection and stereo matching. A snake is an energy minimizing, deformable spline influenced by constraint and image forces that pull it towards object contours and internal forces that resist deformation.
Photograph manipulationPhotograph manipulation involves the of a photograph. Some photograph manipulations are considered to be skillful artwork, while others are considered to be unethical practices, especially when used to deceive. Photographs may be manipulated for political propaganda, to improve the appearance of a subject, for entertainment, or as humor. Depending on the application and intent, some photograph manipulations are considered an art form because they involve creation of unique images and in some instances, signature expressions of art by photographic artists.
Hessian affine region detectorThe Hessian affine region detector is a feature detector used in the fields of computer vision and . Like other feature detectors, the Hessian affine detector is typically used as a preprocessing step to algorithms that rely on identifiable, characteristic interest points. The Hessian affine detector is part of the subclass of feature detectors known as affine-invariant detectors: Harris affine region detector, Hessian affine regions, maximally stable extremal regions, Kadir–Brady saliency detector, edge-based regions (EBR) and intensity-extrema-based (IBR) regions.
Partition of a setIn mathematics, a partition of a set is a grouping of its elements into non-empty subsets, in such a way that every element is included in exactly one subset. Every equivalence relation on a set defines a partition of this set, and every partition defines an equivalence relation. A set equipped with an equivalence relation or a partition is sometimes called a setoid, typically in type theory and proof theory. A partition of a set X is a set of non-empty subsets of X such that every element x in X is in exactly one of these subsets (i.
Texture atlasIn computer graphics, a texture atlas (also called a spritesheet or an image sprite in 2d game development) is an image containing multiple smaller images, usually packed together to reduce overall dimensions. An atlas can consist of uniformly-sized images or images of varying dimensions. A sub-image is drawn using custom texture coordinates to pick it out of the atlas. In an application where many small textures are used frequently, it is often more efficient to store the textures in a texture atlas which is treated as a single unit by the graphics hardware.
Split graphIn graph theory, a branch of mathematics, a split graph is a graph in which the vertices can be partitioned into a clique and an independent set. Split graphs were first studied by , and independently introduced by . A split graph may have more than one partition into a clique and an independent set; for instance, the path a–b–c is a split graph, the vertices of which can be partitioned in three different ways: the clique {a, b} and the independent set {c} the clique {b, c} and the independent set {a} the clique {b} and the independent set {a, c} Split graphs can be characterized in terms of their forbidden induced subgraphs: a graph is split if and only if no induced subgraph is a cycle on four or five vertices, or a pair of disjoint edges (the complement of a 4-cycle).