Publication

Experimental study of Ni3Al slip traces by atomic force microscopy: an evidence of mobile dislocation exhaustion

Joël Bonneville
2004
Journal paper
Abstract

Slip markings produced on the surfaces of Ni3(Al, Ta) single crystals, plastically deformed at various temperatures in the flow stress anomaly domain, were examined by atomic force microscopy (AFM). A dominant feature is that for all investigated temperatures, the slip traces are rectilinear and correspond to the primary octahedral glide plane. In addition, their lengths drastically decrease when the temperature is raised. This latter result is interpreted as a strong increase of the exhaustion rate of mobile dislocations with increasing temperatures. The consequences of these results in the understanding of Ni3Al flow stress anomaly are discussed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.