Publication

The effect of tissue geometry on the activation recovery interval of atrial myocytes

Vincent Jacquemet
2009
Journal paper
Abstract

The propagation of electric activity inside a realistically-shaped, thick-walled model of the atria was studied. The membrane kinetics was based on the formulations of Courtemanche, Ramirez and Nattel. In spite of the assumed uniformity of all kinetics parameters, diffusion parameters, the activation recovery intervals revealed values in a range of about 20 ms, having a clearly distinct spatial distribution, with higher values close to the site of activation and lower ones at sites where activation ends. This paper presents an analysis of this phenomenon based on similar observations made on propagation along the classic models of cable and disk, as well as along the surface of a spherical shell and a diabolo-shaped shell. Propagation in the latter three geometries is treated under axial-symmetric conditions, for which dedicated analytical expressions of the diffusion term are described. The results indicate that the major effects can be directly attributed to a step discontinuity in the conductivity of the medium surrounding the locations of initial and final depolarization. Overall geometry of the myocardial wall determines the smooth distribution of activation recovery intervals in the medium, showing local maxima around the points of initiation and local minima at locations where depolarization ends. The points are determined by the location of the stimulation sites involved and overall tissue geometry.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (24)
Depolarization
In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is essential to the function of many cells, communication between cells, and the overall physiology of an organism. Most cells in higher organisms maintain an internal environment that is negatively charged relative to the cell's exterior. This difference in charge is called the cell's membrane potential.
Cardiac muscle
Cardiac muscle (also called heart muscle or myocardium) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle that constitutes the main tissue of the wall of the heart. The cardiac muscle (myocardium) forms a thick middle layer between the outer layer of the heart wall (the pericardium) and the inner layer (the endocardium), with blood supplied via the coronary circulation.
Myocardial infarction
A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops in one of the coronary arteries of the heart, causing damage to the heart muscle. The most common symptom is chest pain or discomfort which may travel into the shoulder, arm, back, neck or jaw. Often it occurs in the center or left side of the chest and lasts for more than a few minutes. The discomfort may occasionally feel like heartburn. Other symptoms may include shortness of breath, nausea, feeling faint, a cold sweat or feeling tired.
Show more
Related publications (32)

An integrated heart-torso electromechanical model for the simulation of electrophysiological outputs accounting for myocardial deformation

Alfio Quarteroni, Francesco Regazzoni

When generating in-silico clinical electrophysiological outputs, such as electrocardiograms (ECGs) and body surface potential maps (BSPMs), mathematical models have relied on single physics, i.e. of the cardiac electrophysiology (EP), neglecting the role o ...
Elsevier Science Sa2024

Implementation of an epicardial implantable MEMS sensor for continuous and real-time postoperative assessment of left ventricular activity in adult minipigs over a short- and long-term period

Silvestro Micera

The sensing of left ventricular (LV) activity is fundamental in the diagnosis and monitoring of cardiovascular health in high-risk patients after cardiac surgery to achieve better short- and long-term outcome. Conventional approaches rely on noninvasive me ...
Aip Publishing2024

Finding information-rich electrocardiographic biomarkers to characterize atrial fibrillation.

Anna Mary Mc Cann

Atrial fibrillation (AF) is the most common cardiac arrhythmia; it will affect one in four adults worldwide in their lifetime. AF has serious consequences, including drastically increased risk of stroke. Catheter ablation surgery is an established treatmen ...
EPFL2023
Show more
Related MOOCs (6)
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Simulation Neurocience
Learn how to digitally reconstruct a single neuron to better study the biological mechanisms of brain function, behaviour and disease.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.