Domain name registrarA domain name registrar is a company that manages the reservation of Internet domain names. A domain name registrar must be accredited by a generic top-level domain (gTLD) registry or a country code top-level domain (ccTLD) registry. A registrar operates in accordance with the guidelines of the designated domain name registries. Until 1999, Network Solutions Inc. (NSI) operated the registries for the com, net, and org top-level domains (TLDs). In addition to the function of domain name registry operator, it was also the sole registrar for these domains.
Algebraic geometryAlgebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros. The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations.
Factorization of polynomials over finite fieldsIn mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors. This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm. In practice, algorithms have been designed only for polynomials with coefficients in a finite field, in the field of rationals or in a finitely generated field extension of one of them.
Reciprocal polynomialIn algebra, given a polynomial with coefficients from an arbitrary field, its reciprocal polynomial or reflected polynomial, denoted by p∗ or pR, is the polynomial That is, the coefficients of p∗ are the coefficients of p in reverse order. Reciprocal polynomials arise naturally in linear algebra as the characteristic polynomial of the inverse of a matrix. In the special case where the field is the complex numbers, when the conjugate reciprocal polynomial, denoted p†, is defined by, where denotes the complex conjugate of , and is also called the reciprocal polynomial when no confusion can arise.