Curve fittingCurve fitting is the process of constructing a curve, or mathematical function, that has the best fit to a series of data points, possibly subject to constraints. Curve fitting can involve either interpolation, where an exact fit to the data is required, or smoothing, in which a "smooth" function is constructed that approximately fits the data. A related topic is regression analysis, which focuses more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data observed with random errors.
Jacobi methodIn numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges. This algorithm is a stripped-down version of the Jacobi transformation method of matrix diagonalization. The method is named after Carl Gustav Jacob Jacobi.
Comparison of numerical-analysis softwareThe following tables provide a comparison of numerical analysis software. The operating systems the software can run on natively (without emulation). Colors indicate features available as The operating systems the software can run on natively (without emulation).
Romberg's methodIn numerical analysis, Romberg's method is used to estimate the definite integral by applying Richardson extrapolation repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally spaced points. The integrand must have continuous derivatives, though fairly good results may be obtained if only a few derivatives exist.
Function approximationIn general, a function approximation problem asks us to select a function among a that closely matches ("approximates") a in a task-specific way. The need for function approximations arises in many branches of applied mathematics, and computer science in particular , such as predicting the growth of microbes in microbiology. Function approximations are used where theoretical models are unavailable or hard to compute.
Geometric calculusIn mathematics, geometric calculus extends the geometric algebra to include differentiation and integration. The formalism is powerful and can be shown to encompass other mathematical theories including vector calculus, differential geometry, and differential forms. With a geometric algebra given, let and be vectors and let be a multivector-valued function of a vector. The directional derivative of along at is defined as provided that the limit exists for all , where the limit is taken for scalar .