Cell (processor)Cell is a 64-bit multi-core microprocessor microarchitecture that combines a general-purpose PowerPC core of modest performance with streamlined coprocessing elements which greatly accelerate multimedia and vector processing applications, as well as many other forms of dedicated computation. It was developed by Sony, Toshiba, and IBM, an alliance known as "STI". The architectural design and first implementation were carried out at the STI Design Center in Austin, Texas over a four-year period beginning March 2001 on a budget reported by Sony as approaching US$400 million.
Word processorA word processor (WP) is a device or computer program that provides for input, editing, formatting, and output of text, often with some additional features. Early word processors were stand-alone devices dedicated to the function, but current word processors are word processor programs running on general purpose computers. The functions of a word processor program fall somewhere between those of a simple text editor and a fully functioned desktop publishing program.
Task parallelismTask parallelism (also known as function parallelism and control parallelism) is a form of parallelization of computer code across multiple processors in parallel computing environments. Task parallelism focuses on distributing tasks—concurrently performed by processes or threads—across different processors. In contrast to data parallelism which involves running the same task on different components of data, task parallelism is distinguished by running many different tasks at the same time on the same data.
No instruction set computingNo instruction set computing (NISC) is a computing architecture and compiler technology for designing highly efficient custom processors and hardware accelerators by allowing a compiler to have low-level control of hardware resources. NISC is a statically scheduled horizontal nanocoded architecture (SSHNA). The term "statically scheduled" means that the operation scheduling and Hazard handling are done by a compiler. The term "horizontal nanocoded" means that NISC does not have any predefined instruction set or microcode.
Granularity (parallel computing)In parallel computing, granularity (or grain size) of a task is a measure of the amount of work (or computation) which is performed by that task. Another definition of granularity takes into account the communication overhead between multiple processors or processing elements. It defines granularity as the ratio of computation time to communication time, wherein computation time is the time required to perform the computation of a task and communication time is the time required to exchange data between processors.
Single instruction, multiple threadsSingle instruction, multiple threads (SIMT) is an execution model used in parallel computing where single instruction, multiple data (SIMD) is combined with multithreading. It is different from SPMD in that all instructions in all "threads" are executed in lock-step. The SIMT execution model has been implemented on several GPUs and is relevant for general-purpose computing on graphics processing units (GPGPU), e.g. some supercomputers combine CPUs with GPUs. The processors, say a number p of them, seem to execute many more than p tasks.
Single instruction, multiple dataSingle instruction, multiple data (SIMD) is a type of parallel processing in Flynn's taxonomy. SIMD can be internal (part of the hardware design) and it can be directly accessible through an instruction set architecture (ISA), but it should not be confused with an ISA. SIMD describes computers with multiple processing elements that perform the same operation on multiple data points simultaneously. Such machines exploit data level parallelism, but not concurrency: there are simultaneous (parallel) computations, but each unit performs the exact same instruction at any given moment (just with different data).
Data parallelismData parallelism is parallelization across multiple processors in parallel computing environments. It focuses on distributing the data across different nodes, which operate on the data in parallel. It can be applied on regular data structures like arrays and matrices by working on each element in parallel. It contrasts to task parallelism as another form of parallelism. A data parallel job on an array of n elements can be divided equally among all the processors.
Processor (computing)In computing and computer science, a processor or processing unit is an electrical component (digital circuit) that performs operations on an external data source, usually memory or some other data stream. It typically takes the form of a microprocessor, which can be implemented on a single metal–oxide–semiconductor integrated circuit chip. In the past, processors were constructed using multiple individual vacuum tubes, multiple individual transistors, or multiple integrated circuits. Today, processors use built-in transistors.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.