**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Publication# Young modulus dependence of nanoscopic friction coefficient in hard coatings

Abstract

We present an atomic force microscope study of nanoscopic sliding friction on diamond, diamond-like carbon, and on three CrN thin films with varying hardness obtained by different growth temperatures. For the CrN films, we show that the changes in the friction coefficient can be traced back to variations of the Young modulus. More generally, we show for all samples investigated and in wearless regime, that the nanoscopic friction coefficient is directly linked to the Young modulus. (C) 2003 American Institute of Physics.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related MOOCs (3)

Related publications (34)

Related concepts (26)

Micro and Nanofabrication (MEMS)

Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Microstructure Fabrication Technologies I

Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Micro and Nanofabrication (MEMS)

Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Young's modulus

Young's modulus , the Young modulus, or the modulus of elasticity in tension or axial compression (i.e., negative tension), is a mechanical property that measures the tensile or compressive stiffness of a solid material when the force is applied lengthwise. It quantifies the relationship between tensile/compressive stress (force per unit area) and axial strain (proportional deformation) in the linear elastic region of a material and is determined using the formula: Young's moduli are typically so large that they are expressed not in pascals but in gigapascals (GPa).

Shear modulus

In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: where = shear stress is the force which acts is the area on which the force acts = shear strain. In engineering , elsewhere is the transverse displacement is the initial length of the area. The derived SI unit of shear modulus is the pascal (Pa), although it is usually expressed in gigapascals (GPa) or in thousand pounds per square inch (ksi).

Elastic modulus

An elastic modulus (also known as modulus of elasticity) is the unit of measurement of an object's or substance's resistance to being deformed elastically (i.e., non-permanently) when a stress is applied to it. The elastic modulus of an object is defined as the slope of its stress–strain curve in the elastic deformation region: A stiffer material will have a higher elastic modulus. An elastic modulus has the form: where stress is the force causing the deformation divided by the area to which the force is applied and strain is the ratio of the change in some parameter caused by the deformation to the original value of the parameter.

László Forró, Luca Rossi, Endre Horvath, Raphaël Foschia

The mechanical response of individual titanate nanowires (H2Ti3O7), synthesized in an upscaled production (kg/month) was investigated by means of an Atomic Force Microscope (AFM) in nanomechanical spectroscopic mode. Because of their layered structure, bes ...

2020John Martin Kolinski, Martin Louis Francis Coux

A gravity-driven droplet will rapidly flow down an inclined substrate, resisted only by stresses inside the liquid. If the substrate is compliant, with an elastic modulus G < 100 kPa, the droplet will markedly slow as a consequence of viscoelastic braking. ...

2020Katrin Beyer, Bastian Valentin Wilding, Michele Godio

A correction to this paper has been published: https://doi.org/10.1617/s11527-021-01653-6 ...