Dislocation-void interaction in Fe: a comparison between molecular dynamics and dislocation dynamics
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Degradation of mechanical properties due to nanometric irradiation induced defects is one of the challenging issues in designing ferritic materials for future nuclear fusion reactors. Various types of defects, namely dislocation loops, voids, He bubbles an ...
Polycrystalline materials with crystallite diameters below hundred nanometer exhibit extraordinary strength which goes along with a decrease in ductility. In order to tailor tough materials, which combine strength and ductility, the underlying deformation ...
Materials consisting of grains or crystallites with sizes below a hundred nanometers have exhibited unique physical and mechanical properties in comparison to their coarse-grained counterparts. As a result, considerable effort has been put into uncovering ...
The gamma surfaces in the pyramidal I {1 -1 0 1} and II {1 1 -2 2} planes for hexagonal close packed Mg have been calculated using two embedded-atom-method potentials and by ab initio methods, and reasonable agreement is obtained for key stacking fault ene ...
Impurities are known to have a significant impact on materials properties. In particular, the presence of impurities can change mechanical properties and stabilize the microstructure by reducing grain growth and recrystallization processes. In the past ato ...
Friction and the associated wear are important but still poorly understood phenomena with strong impacts on our every day lives. Several mechanisms, such as plasticity, lattice vibration, and third-body interactions contribute to the dissipation of energy ...
Many phenomena in crystalline metals such as friction, nano-indentation and ductile fracture are plasticity-driven and poorly understood. The physical complexity is further increased by the inherently multiscale nature of contact and fracture [1]. This stu ...
The application of discrete dislocation (DD) dynamics methods to study materials with realistic yield stresses and realistic cohesive strengths requires new algorithms. Here, limitations of the standard algorithms are discussed, and then new algorithms to ...
Despite significant advances in computational materials science, a quantitative, parameter-free prediction of the mechanical properties of alloys has been difficult to achieve from first principles. Here, we present a new analytic theory that, with input f ...
Voids and He bubbles are strong obstacles to dislocation, which induce hardening and loss of ductility. In Fe, molecular dynamics simulation is used to investigate the basic mechanisms of the interaction between a moving edge dislocation and a void or He b ...