Publication

Using geotypes for landslide hazard assessment and mapping: a coupled field and GIS-based method

Aurèle Parriaux, Séverine Bilgot
2009
Conference paper
Abstract

Switzerland is exceptionally subjected to landslides; indeed, about 10% of its area is considered as unstable. Making this observation, its Department of the Environment (BAFU) introduces in 1997 a method to realize landslide hazard maps. It is routinely used but, like most of the methods applied in Europe to map unstable areas, it is mainly based on the signs of previous or current phenomena (geomorphologic mapping, archive consultation, etc.) even though instabilities can appear where there is nothing to show that they existed earlier. Furthermore, the transcription from the geomorphologic map to the hazard map can vary according to the geologist or the geographer who realizes it: this method is affected by a certain lack of transparency. The aim of this project is to introduce the bedrock of a new method for landslide hazard mapping; based on instability predisposition assessment, it involves the designation of main factors for landslide susceptibility, their integration in a GIS to calculate a landslide predisposition index and the implementation of new methods to evaluate these factors; to be competitive, these processes have to be both cheap and quick. To identify the most important parameters to consider for assessing slope stability, we chose a large panel of topographic, geomechanic and hydraulic parameters and tested their importance by calculating safety factors on theoretical landslides using Geostudio 2007®; thus, we could determine that slope, cohesion, hydraulic conductivity and saturation play an important role in soil stability. After showing that cohesion and hydraulic conductivity of loose materials are strongly linked to their granulometry and plasticity index, we implemented two new field tests, one based on teledetection and one coupled sedimentometric and blue methylen test to evaluate these parameters. From these data, we could deduce approximated values of maximum cohesion and saturated hydraulic conductivity. The hydraulic conductivity of fractured rocks was obtained from the analysis of their geometrical properties (fractures density, aperture size and orientation). The other factors were extracted from DEM and hydrologic mapping. Then, we merged these parameters into three groups corresponding to three families of factors (gravitational, hydrodynamic I based on hydraulic conductivity contrast between superficial loose material and hard rock substratum and hydrodynamic II related to susceptibility to suffosion). We added a fourth factor related to the predisposition of the geotype (new classification for geologic formations, based on genetic standards for loose material and on lithologic standards for hard rock) to slope instability processes: the latter enabled us to integrate attributes proper to each geotypes (over-consolidation for ground moraines, stratifications for glaciolacustrine deposits, etc...) and which would be long and complex to integrate to a GIS. Afterward, we implemented an ArcGis® toolbox allowing to obtain automatically cohesion, hydraulic conductivity, saturation and slope from field parameters (granulometry, plasticity, fracturation, geomorphology and drainage) and DEM and to calculate geotype, gravitational, hydrodynamic I and hydrodynamic II factors; combining them, we led to a landslide susceptibility index. To know the relative importance of these four factors, we tried different weightings on four areas in different geologic contexts of Switzerland (flysch, molasse, crystallin) and of different sizes (from 0.1 to 2.5 km2). Finally, we applied this methodology (from field survey to GIS operations) to five other sites in Switzerland to check its validity: in flysch and molassic contexts, more than 90% of actual landslides were classified as “very susceptible to slope instability”. In Triassic area, more than 50% of the actual unstable areas were classified as "stable", which is not satisfying:in this case, it should be necessary to integrate another layer of data to take into account dissolution and plasticity of Triassic formations. The main assets of this new method are that the integration of field measurements in GIS provides for a good transparency in the landslide susceptibility index attribution and that the use of geotypes classification enables to use this method in most of European contexts.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (42)
Slope stability
Slope stability refers to the condition of inclined soil or rock slopes to withstand or undergo movement; the opposite condition is called slope instability or slope failure. The stability condition of slopes is a subject of study and research in soil mechanics, geotechnical engineering and engineering geology. Analyses are generally aimed at understanding the causes of an occurred slope failure, or the factors that can potentially trigger a slope movement, resulting in a landslide, as well as at preventing the initiation of such movement, slowing it down or arresting it through mitigation countermeasures.
Slope stability analysis
Slope stability analysis is a static or dynamic, analytical or empirical method to evaluate the stability of slopes of soil- and rock-fill dams, embankments, excavated slopes, and natural slopes in soil and rock. It is performed to assess the safe design of a human-made or natural slopes (e.g. embankments, road cuts, open-pit mining, excavations, landfills etc.) and the equilibrium conditions. Slope stability is the resistance of inclined surface to failure by sliding or collapsing.
Landslide classification
There have been known various classifications of landslides. Broad definitions include forms of mass movement that narrower definitions exclude. For example, the McGraw-Hill Encyclopedia of Science and Technology distinguishes the following types of landslides: fall (by undercutting) fall (by toppling) slump rockslide earthflow sinkholes, mountain side rockslide that develops into rock avalanche Influential narrower definitions restrict landslides to slumps and translational slides in rock and regolith, not involving fluidisation.
Show more
Related publications (43)

Mechanics, Modeling, and Upscaling of Biocemented Soils: A Review of Breakthroughs and Challenges

Lyesse Laloui, Dimitrios Terzis, Ray Harran

Biogeotechnical research has inspired revolutionary ideas to claim the status of a distinctive branch of geotechnical engineering. Most notably, underground carbonate mineralization, most commonly referred to as microbially induced carbonate precipitation ...
ASCE-AMER SOC CIVIL ENGINEERS2023

Global Prediction of Soil Saturated Hydraulic Conductivity Using Random Forest in a Covariate‐Based GeoTransfer Function (CoGTF) Framework

Sara Bonetti, Dani Or

Saturated hydraulic conductivity (Ksat) is a key soil hydraulic parameter for representing infiltration and drainage in land surface models. For large scale applications, Ksat is often estimated from pedotransfer functions (PTFs) based on easy-to-measure s ...
2021

ENHANCED GEOTHERMAL SYSTEMS (EGS) - NUMERICAL PREDICTION OF THE MODE AND LOCATION OF FRACTURE INITIATION

Mohamad Zaarour

Geo-energy is a comprehensive term used to describe any form of energy that comes from the Earth. This includes hydrocarbons such as gas, oil, and coal, but also geothermal energy (shallow and deep). The focus of this thesis is on Enhanced Geothermal Syste ...
2020
Show more
Related MOOCs (4)
Introduction to Geographic Information Systems (part 2)
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Introduction to Geographic Information Systems (part 2)
Ce cours constitue la seconde partie d'un enseignement consacré aux bases théoriques et pratiques des systèmes d’information géographique. Il propose une introduction aux systèmes d’information géogra
Geographical Information Systems 2
This course is the second part of a course dedicated to the theoretical and practical bases of Geographic Information Systems (GIS). It offers an introduction to GIS that does not require prior compu
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.