Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The following paper presents a novel audio-visual approach for unsupervised speaker locationing. Using recordings from a single, low-resolution room overview camera and a single far-field microphone, a state-of-the art audio-only speaker localization syste ...
This paper addresses the problem of distributed image coding in camera neworks. The correlation between multiple images of a scene captured from different viewpoints can be effiiciently modeled by local geometric transforms of prominent images features. Su ...
We propose a new method for imaging sound speed in breast tissue from measurements obtained by ultrasound tomography (UST) scan- ners. Given the measurements, our algorithm finds a sparse image representation in an overcomplete dictionary that is adapted t ...
Demand has emerged for next generation visual technologies that go beyond conventional 2D imaging. Such technologies should capture and communicate all perceptually relevant three-dimensional information about an environment to a distant observer, providin ...
With the flood of information available today the question how to deal with high dimensional data/signals, which are cumbersome to handle, to calculate with and to store, is highly important. One approach to reducing this flood is to find sparse signal rep ...
This paper presents a new approach for estimating the disparity search range in stereo video that enforces temporal consistency. Reliable search range estimation is very important since an incorrect estimate causes most stereo matching methods to get trapp ...
This paper shows introduces the use sensing dictionaries for p-thresholding, an algorithm to compute simultaneous sparse approximations of multichannel signals over redundant dictionaries. We do both a worst case and average case recovery analyses of this ...
We develop an efficient learning framework to construct signal dictionaries for sparse representation by selecting the dictionary columns from multiple candidate bases. By sparse, we mean that only a few dictionary elements, compared to the ambient signal ...
A novel model is presented to learn bimodally informative structures from audio-visual signals. The signal is represented as a sparse sum of audio- visual kernels. Each kernel is a bimodal function consisting of synchronous snippets of an audio waveform an ...
This article extends the concept of it compressed sensing to signals that are not sparse in an orthonormal basis but rather in a redundant dictionary. It is shown that a matrix, which is a composition of a random matrix of certain type and a deterministic ...