Publication

Analysis of expression of PDCP and MAL13P1.308 of Plasmodium falciparum employing a quantitative proteomics approach based on SILAC

Céline Freymond
2008
Student project
Abstract

Plasmodium falciparum is a deadly parasite that causes malaria in humans. This disease causes the death of one million people every year. To find new means to fight this parasite, it is important to learn more about its biology. As the pathways of protein expression are better understood, it becomes easier to find out how to block these mechanisms. The completion of the genome sequencing has opened new perspective of genome wide analysis. One of these studies was done by LaCount et al. who used the yeast1two1hybrid system to map the complete interaction network between proteins of P. falciparum. ¨ From this network of interaction an interesting protein was studied further by Daubenberger et al. which is PDCP. This protein is closely related to MSP11 in this protein network, a protein involved in erythrocyte invasion. PDCP is a CCCH1type zinc finger protein, a family of proteins that are involved in protein1protein interaction, nucleic acid binding and binding in small ligands. It was shown that its expression was dependant on the density of the parasites. In this study we used the SILAC technology to confirm these previous results. A culture is grown with isotopically heavy isoleucine in the medium as a control sample. After a few cell cycles, almost all the natural isoleucines are replaced with the labeled ones. Three cultures with parasitemia of 2, 5 and 10% are grown and mixed with an equal amount of the control culture. When the proteins are analyzed by mass spectrometry, the peptides that contained isoleucine will be detected as two separate peaks. After normalization of each peptide area with this internal control, the quantity of PDCP can be compared between cultures of different parasitemias. 11 peptides of PDCP have been detected by mass spectrometry, proving its existence for the first time. These peptides were labeled to more than 95%, allowing the comparison of PDCP expression between the cultures. But because of difficulty of reproducibility in in vitro cultures, the regulation of PDCP by the parasitemia has not been observed by SILAC. We wanted to study further the protein interaction network in which PDCP is involved. MAL13P1.308, a protein directly interacting with PDCP and MSP11 in the protein network map, was analyzed by IFA. It was found to be expressed during all stages of the asexual blood stage cycle and it was not imported in the host cell. The next step will be to see if it interacts with PDCP by co1localization studies

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Protein–protein interaction
Protein–protein interactions (PPIs) are physical contacts of high specificity established between two or more protein molecules as a result of biochemical events steered by interactions that include electrostatic forces, hydrogen bonding and the hydrophobic effect. Many are physical contacts with molecular associations between chains that occur in a cell or in a living organism in a specific biomolecular context. Proteins rarely act alone as their functions tend to be regulated.
Plasmodium falciparum
Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer (Burkitt's lymphoma) and is classified as a Group 2A (probable) carcinogen.
Whole genome sequencing
Whole genome sequencing (WGS), also known as full genome sequencing, complete genome sequencing, or entire genome sequencing, is the process of determining the entirety, or nearly the entirety, of the DNA sequence of an organism's genome at a single time. This entails sequencing all of an organism's chromosomal DNA as well as DNA contained in the mitochondria and, for plants, in the chloroplast. Whole genome sequencing has largely been used as a research tool, but was being introduced to clinics in 2014.
Show more
Related publications (44)

Climbing into their Skin to Understand Contextual Protein-Protein Associations and Localizations: Functional Investigations in Transgenic Live Model Organisms

Yimon Aye

Borrowing some quotes from Harper Lee's novel "To Kill A Mockingbird" to help frame our manuscript, we discuss methods to profile local proteomes. We initially focus on chemical biology regimens that function in live organisms and use reactive biotin speci ...
Wiley-V C H Verlag Gmbh2024

KRAB zinc-finger proteins and their transposable element targets: between antagonism and cooperation

Jonas Caspar De Tribolet-Hardy

There are 377 Krüppel-associated box (KRAB) domain-containing zinc finger proteins (KZFPs) in the human genome, making them the largest family of transcription factors. KZFPs are defined by a N-terminal KRAB domain and several zinc-finger domains arranged ...
EPFL2022

Bringing Functional Context to Emerging Proximity-mapping Proteomics Tools

Yimon Aye

If one considers chemical-biology toolsets that have had the greatest impact on numerous fields of life sciences over the most recent years, proximity-labeling tools, such as APEX, and Bio-ID arguably lead the way. This article reflects upon the current st ...
SWISS CHEMICAL SOC2022
Show more
Related MOOCs (6)
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Cell Biology
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Neuroscience Reconstructed: Genetics and Brain Development
This course will provide the fundamental knowledge in neuroscience required to understand how the brain is organised and how function at multiple scales is integrated to give rise to cognition and beh
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.