We demonstrate a monolithic polymer electrolyte membrane fuel cell by integrating a narrow (200 mu m) Nafion strip in a molded polydimethylsiloxane (PDMS) structure. We propose two designs, based on two 200 mu m-wide and two 80 mu m-wide parallel microfluidic channels, sandwiching the Nafion strip, respectively. Clamping the PDMS/Nafion assembly with a glass chip that has catalyst-covered Au electrodes, results in a leak-tight fuel cell with stable electrical output. Using 1 M CH3OH in 0.5 M H2SO4 solution as fuel in the anodic channel, we compare the performance of (1) O-2-saturated 0.5 M H2SO4 and (II) 0.01 M H2O2 in 0.5 M H2SO4 oxidant solutions in the cathodic channel. For the 200 mu m channel width, the fuel cell has a maximum power density of 0.5 mW cm(-2) and 1.5 mW cm(-2) at room temperature, for oxidants I and II, respectively, with fuel and oxidant flow rates in the 50-160 mu L min(-1) range. A maximum power density of 3.0 mW cm(-2) is obtained, using oxidant II for the chip with 80 mu m-wide channel. due to an improved design that reduces oxidant and fuel depletion effects near the electrodes. (C) 2009 Elsevier B.V. All rights reserved.
Sophia Haussener, Saurabh Yuvraj Tembhurne, Alexandre Dominique M. Cattry, Matthieu Jonin, Mahendra Patel