Action (physics)In physics, action is a scalar quantity describing how a physical system has changed over time (its dynamics). Action is significant because the equations of motion of the system can be derived through the principle of stationary action. In the simple case of a single particle moving with a constant velocity (uniform linear motion), the action is the momentum of the particle times the distance it moves, added up along its path; equivalently, action is twice the particle's kinetic energy times the duration for which it has that amount of energy.
Agricultural cooperativeAn agricultural cooperative, also known as a farmers' co-op, is a producer cooperative in which farmers pool their resources in certain areas of activity. A broad typology of agricultural cooperatives distinguishes between agricultural service cooperatives, which provide various services to their individually-farming members, and agricultural production cooperatives in which production resources (land, machinery) are pooled and members farm jointly.
Cooperative bankingCooperative banking is retail and commercial banking organized on a cooperative basis. Cooperative banking institutions take deposits and lend money in most parts of the world. Cooperative banking, as discussed here, includes retail banking carried out by credit unions, mutual savings banks, building societies and cooperatives, as well as commercial banking services provided by mutual organizations (such as cooperative federations) to cooperative businesses.
Hamilton's principleIn physics, Hamilton's principle is William Rowan Hamilton's formulation of the principle of stationary action. It states that the dynamics of a physical system are determined by a variational problem for a functional based on a single function, the Lagrangian, which may contain all physical information concerning the system and the forces acting on it. The variational problem is equivalent to and allows for the derivation of the differential equations of motion of the physical system.
Rigid body dynamicsIn the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces. The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference frames attached to each body. This excludes bodies that display fluid, highly elastic, and plastic behavior.
Screw theoryScrew theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawell Ball in 1876 for application in kinematics and statics of mechanisms (rigid body mechanics). Screw theory provides a mathematical formulation for the geometry of lines which is central to rigid body dynamics, where lines form the screw axes of spatial movement and the lines of action of forces.
Strategy (game theory)In game theory, a player's strategy is any of the options which they choose in a setting where the outcome depends not only on their own actions but on the actions of others. The discipline mainly concerns the action of a player in a game affecting the behavior or actions of other players. Some examples of "games" include chess, bridge, poker, monopoly, diplomacy or battleship. A player's strategy will determine the action which the player will take at any stage of the game.
Co-operative economicsCooperative (or co-operative) economics is a field of economics that incorporates cooperative studies and political economy toward the study and management of cooperatives. History of the cooperative movement Cooperative economics developed as both a theory and a concrete alternative to industrial capitalism in the late 1700s and early 1800s. As such, it was a form of stateless socialism. The term "socialism," in fact, was coined in The Cooperative Magazine in 1827.
Evolutionarily stable strategyAn evolutionarily stable strategy (ESS) is a strategy (or set of strategies) that is impermeable when adopted by a population in adaptation to a specific environment, that is to say it cannot be displaced by an alternative strategy (or set of strategies) which may be novel or initially rare. Introduced by John Maynard Smith and George R. Price in 1972/3, it is an important concept in behavioural ecology, evolutionary psychology, mathematical game theory and economics, with applications in other fields such as anthropology, philosophy and political science.
Analytical mechanicsIn theoretical physics and mathematical physics, analytical mechanics, or theoretical mechanics is a collection of closely related alternative formulations of classical mechanics. It was developed by many scientists and mathematicians during the 18th century and onward, after Newtonian mechanics. Since Newtonian mechanics considers vector quantities of motion, particularly accelerations, momenta, forces, of the constituents of the system, an alternative name for the mechanics governed by Newton's laws and Euler's laws is vectorial mechanics.