NavierStokes/Darcy coupling: modeling, analysis and numerical approximation
Related publications (54)
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
This thesis addresses the development and implementation of efficient and parallel algorithms for the numerical simulation of Fluid-Structure Interaction (FSI) problems in hemodynamics. Indeed, hemodynamic conditions in large arteries are significantly aff ...
We present a new conservative multiscale method for Stokes flow in heterogeneous porous media. The method couples a discontinuous Galerkin finite element method (DG-FEM) at the macroscopic scale for the solution of an effective Darcy equation with a Stokes ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
In this paper we provide a general framework for model reduction methods applied to fluid flow in porous media. Using reduced basis and numerical homogenization techniques we show that the complexity of the numerical approximation of Stokes flow in heterog ...
To model a creeping flow through closed cracks in cracked materials we study a normal mechanical contact between two elastic half-spaces with rough surfaces is studied. The roughness is modeled using a filtering technique in Fourier space: the root mean sq ...
Fluid flow in porous media is a multiscale process where the effective dynamics, which is often the goal of a computation, depends strongly on the porous micro structure. Resolving the micro structure in the whole porous medium can, however, be prohibitive ...
A numerical method based on an adaptive octree space discretization for the simulation of 3D free-surface fluid flows is proposed. The Navier-Stokes equations are solved with a time-splitting scheme, which decouples advection from diffusion/incompressibili ...
The modeling of an incompressible fluid through a porous medium requires to deal with two systems of partial differential equations (PDEs) for the two types of media (fluid and porous). A possible way to couple theses two equations is by using the penaliza ...
A disk that is free to rotate about its axis and connected to a torsional spring behaves as a damped oscillator when twisted and released. The initial elastic energy is periodically turned to kinetic energy and it gets progressively dissipated by the visco ...
The paper shows that it is possible to combine the free-energy lattice Boltzmann approach to multiphase modeling of fluids involving both liquid and vapor with the partial bounce back lattice Boltzmann approach to modeling effective media. Effective media ...