MultisetIn mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, allows for multiple instances for each of its elements. The number of instances given for each element is called the multiplicity of that element in the multiset. As a consequence, an infinite number of multisets exist which contain only elements a and b, but vary in the multiplicities of their elements: The set contains only elements a and b, each having multiplicity 1 when is seen as a multiset.
Inaccessible cardinalIn set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies . The term "inaccessible cardinal" is ambiguous. Until about 1950, it meant "weakly inaccessible cardinal", but since then it usually means "strongly inaccessible cardinal".
Category of setsIn the mathematical field of , the category of sets, denoted as Set, is the whose are sets. The arrows or morphisms between sets A and B are the total functions from A to B, and the composition of morphisms is the composition of functions. Many other categories (such as the , with group homomorphisms as arrows) add structure to the objects of the category of sets and/or restrict the arrows to functions of a particular kind.
DirectXMicrosoft DirectX is a collection of application programming interfaces (APIs) for handling tasks related to multimedia, especially game programming and video, on Microsoft platforms. Originally, the names of these APIs all began with "Direct", such as Direct3D, DirectDraw, DirectMusic, DirectPlay, DirectSound, and so forth. The name DirectX was coined as a shorthand term for all of these APIs (the X standing in for the particular API names) and soon became the name of the collection.
Easton's theoremIn set theory, Easton's theorem is a result on the possible cardinal numbers of powersets. (extending a result of Robert M. Solovay) showed via forcing that the only constraints on permissible values for 2κ when κ is a regular cardinal are (where cf(α) is the cofinality of α) and If G is a class function whose domain consists of ordinals and whose range consists of ordinals such that G is non-decreasing, the cofinality of is greater than for each α in the domain of G, and is regular for each α in the domain of G, then there is a model of ZFC such that for each in the domain of G.