Multiple task learning in recurrent neural networks using layered reservoirs
Graph Chatbot
Chat with Graph Search
Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
The development of low-power wearable systems requires specialized techniques to accommodate their unique requirements and constraints. While significant advancements have been made in the inference phase of artificial intelligence, the training phase rema ...
Background: Cancer genome sequencing enables accurate classification of tumours and tumour subtypes. However, prediction performance is still limited using exome-only sequencing and for tumour types with low somatic mutation burden such as many paediatri ...
Superresolution T2-weighted fetal-brain magnetic-resonance imaging (FBMRI) traditionally relies on the availability of several orthogonal low-resolution series of 2-dimensional thick slices (volumes). In practice, only a few low-resolution volumes are acqu ...
In this paper, we develop a MultiTask Learning (MTL) model to achieve dense predictions for comic panels to, in turn, facilitate the transfer of comics from one publication channel to another by assisting authors in the task of reconfiguring their narrativ ...
This thesis consists of three applications of machine learning techniques to empirical asset pricing.In the first part, which is co-authored work with Oksana Bashchenko, we develop a new method that detects jumps nonparametrically in financial time series ...
Phase retrieval consists in the recovery of a complex-valued signal from intensity-only measurements. As it pervades a broad variety of applications, many researchers have striven to develop phase-retrieval algorithms. Classical approaches involve techniqu ...
2023
Meta-learning is the core capability that enables intelligent systems to rapidly generalize their prior ex-perience to learn new tasks. In general, the optimization-based methods formalize the meta-learning as a bi-level optimization problem, that is a nes ...
ELSEVIER SCI LTD2023
In this thesis, we reveal that supervised learning and inverse problems share similar mathematical foundations. Consequently, we are able to present a unified variational view of these tasks that we formulate as optimization problems posed over infinite-di ...
EPFL2022
In the last decade, deep neural networks have achieved tremendous success in many fields of machine learning.However, they are shown vulnerable against adversarial attacks: well-designed, yet imperceptible, perturbations can make the state-of-the-art deep ...
EPFL2022
Thanks to Deep Learning Text-To-Speech (TTS) has achieved high audio quality with large databases. But at the same time the complex models lost any ability to control or interpret the generation process. For the big challenge of affective TTS it is infeasi ...